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The energy performance of residential buildings is closely correlated with occupants’ behavior and their schedules. Moreover, the energy
consumption of heating, ventilation, and air conditioning (HVAC) systems, which are by far the biggest contributor to energy consumption
in residential buildings, is controlled by the presence or absence of occupants in a building. Thus, accurate occupancy presence and activity
profiles are important to determine actual energy demands and corresponding control schedules for residential buildings. Conventionally,
building energy simulation tools typically use a single generic and static occupancy profile to represent a building’s occupancy schedule,
regardless of day type or household size. However, literature in the field suggests that there is significant potential for improvement to allow
for more flexibility and accuracy in the calculation of occupancy. The objective of this study is thus to develop a stochastic building
occupancy model and propose it as a realistic replacement for the conventional generic static schedules. This three-state stochastic
occupancy model is based on the 2019 American Time-Use Survey (ATUS) and considers the differences among weekdays, Saturdays, and
Sundays. In this model, survey respondents are clustered based on the number of residents in their household and a first-order
inhomogeneous Markov chain technique is used to generate occupancy presence schedules. The models’ results are then validated against
the original ATUS data in terms of state probabilities, state durations, and number of state changes throughout the course of a day.

Introduction

In the U.S., residential buildings accounted for more than
22% of total energy consumption, 38% of total electricity
use, and 19% of total greenhouse gas (GHG) emissions in
2020 (U.S. Energy Information Administration (EIA), 2021).
Moreover, energy consumption from residential buildings is
projected to continue to maintain similar levels moving for-
ward, despite technological advancements. This includes a
projected average increase of 0.1% per year for the period
of 2018–2050 under a business as usual scenario (U.S.
Energy Information Administration (EIA), 2019). Thus, the
building energy sector, in general, and residential buildings
in particular, represents a significant opportunity for acceler-
ating the energy transition and ensuring a low-carbon future
(Zhang et al. 2018). The prediction of buildings’ energy use,
both current and future, plays a crucial role in the realization

of this opportunity. Factors that influence a building’s
energy performance and that are commonly utilized for mak-
ing such predictions include (1) climate conditions, (2)
building envelope, (3) building energy systems, (4) indoor
design criteria, (5) building operation and maintenance, and
(6) occupant behavior (Yoshino, Hong, and Nord 2017). Of
all of these factors, occupant behavior is commonly cited as
a major contributor to uncertainty in buildings’ energy use
predictions and simulations (Hong et al. 2016; Yan et al.
2015). This uncertainty often results in a ‘gap’ between
actual and predicted energy consumption of buildings (Hoes
et al. 2009; Hong et al. 2016; Yan et al. 2015).

To address this challenge and the resulting performance
gap, in recent years numerous efforts have been made to
improve occupancy models in terms of predicting occupants’
energy-related behaviors and presence schedules (Hong et al.
2016; Yan et al. 2015). Yan et al. (2015) provides an over-
view of these efforts, and categorizes them into the follow-
ing four key areas of improvement: (1) occupant monitoring
and data collection, (2) model development, (3) model
evaluation, and (4) model implementation into building
simulation tools (Yan et al. 2015).

Previous efforts in this field include the development of
various stochastic and deterministic models to simulate occu-
pancy and occupant-building interaction at the building or
urban scale. Stochastic-based models use statistical
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probabilities derived from real data to estimate the change in
occupancy level or the occurrence of a specific occupant-
building interactions (Happle, Fonseca, and Schlueter 2018).
Researchers use different techniques to sense, collect, and
manage relevant data about building occupants with different
levels of granularity (Yan et al. 2015). Yang, Santamouris,
and Lee (2016) suggested the following five overarching cate-
gories of occupancy data collection: (1) questionnaires, sur-
veys, or interviews, (2) radio frequency (RF) occupancy
sensors, (3) infrared, ultrasound, or video cameras, (4) Carbon
dioxide (CO2) sensors, and (5) global positioning system
(GPS), cellular data, wireless local area network (WLAN),
and Bluetooth. In IEA-EBC Annex 66 (Yan et al. 2017), a
similar classification system was used to categorize occupant
sensing technologies, including (1) threshold and mechanical,
(2) image-based, (3) motion sensing, (4) radio-based environ-
mental, (5) mixed sensing, (6) human-in-the-loop, and (7)
consumption sensing. (Hong et al. 2017) used a different
approach for categorizing occupant behavior sensing method-
ologies, according to which such efforts are either categorized
as (1) physical sensing, or (2) nonphysical sensing methods.
In this categorization system, survey questionnaires and self-
reported data are subjective measurements made by nonphysi-
cal sensing methods, while objective measurements, such as
smart meters, building data, and indoor and outdoor environ-
mental data, are made by physical sensing methods. Among
these data collection methods, time use surveys (TUS) have
been used to investigate residential building occupancy and
occupant behavior patterns. TUSs are nationwide surveys that
document the activities of individuals throughout the day and
provide a high-resolution source of data for the daily routine
of a representative sample of the population. They have been
used in many fields and are projected to have a significant
potential for use in building research (Grandjean, Adnot, and
Binet 2012).

In the context of buildings' energy modeling, the primary
purpose of bottom-up TUS-based models is to simulate indi-
vidual households' occupancy patterns and model the occu-
pants’ energy-related activities to estimate the household’s
energy demand. The resulting occupancy profile and/or the
energy consumption characteristics could be later extrapo-
lated and used as a realistic input to obtain the energy
demand of a simulated community or city (Diao et al. 2017;
Swan and Ugursal 2009). As such, bottom-up probabilistic
models, such as Markov chains, are more suitable for model-
ing the stochastic nature of human activities (Nijhuis,
Gibescu, and Cobben 2016). The Markov chain technique is
used as the core of developed models to mimic human
behaviors, where it simulates a sequence of events based on
the present state and the probability of transition between
states (Br�emaud 2013). The Markov chain models can gener-
ally be divided based on their transition probability matrices.
Accordingly, the homogeneous Markov chain models use a
fixed time-independent transition probability compared with
the non-homogeneous Markov chain, where the transition
probability change with time (Br�emaud 2013).

The accuracy of TUS-based Markov chain models
depends on the size of the population sample used to

calculate the transition probability matrices, Change-Matrix-
Time, which is defined as per how many minutes a different
transition matrix is used, and the simulation time step
(Adamopoulou, Tryferidis, and Tzovaras 2016; Flett and
Kelly 2016; Osman and Ouf 2021; Zhou et al. 2017).
Markov chain models' order is thus another property of a
Markov chain that is determined based on the memory sta-
tus, where a first-order Markov chain is a memory-less
model as the Markov property of the subsequent state is
influenced only by the current state (Osman and Ouf 2021).
Many of the proposed occupancy behavioral models are first
order Markov chains (e.g. Richardson, Thomson, and Infield
2008). Alternatively, in the second-order Markov chain, the
subsequent state's probability is estimated by two precedent
states (Torriti 2014). More recent studies in the field (e.g.
Flett and Kelly 2016; Ram�ırez-Mendiola, Gr€unewald, and
Eyre 2019) have explored the benefits of such models com-
pared to the more common first-order models. While the use
of higher-order models was previously shown to be slightly
more effective in predicting occupancy with accuracy, the
added benefits of such techniques when compared to a first-
order model are not significant and the added complexity is
also avoided (Flett and Kelly 2016).

Accordingly, this study focuses on the model development
and implementation areas of improvement in the aforemen-
tioned occupant behavior modeling framework and attempts
to bridge the gap between predicted and actual energy con-
sumption of buildings by proposing an accurate yet practical
stochastic modeling approach based on the 2019 American
Time Use Survey (ATUS) (U.S. Bureau of Labor Statistics
(BLS) 2007). The proposed first-order inhomogeneous
Markov chain model generates stochastic domestic occupancy
presence data with the same characteristics as the ATUS data
when given the following two input parameters: (1) type of
day (weekday, Saturday, or Sunday) and (2) the number of
household members. In addition to the availability of the
required inputs, the main advantages of the proposed model
compared to those that have been previously proposed (For a
complete review of these efforts please refer to Hong et al.
(2016) and Yan et al. (2015)) are related to the compatibility
of the resulting outputs’ formatting for implementation in
conventional energy simulation tools. In the following sec-
tions of this manuscript, first, the methodology for developing
the introduced model is discussed in detail. Then, the result-
ing model is validated and analyzed.

Methodology

As noted in the introduction, the aim of this study is to pro-
pose a model that generates stochastic occupancy data with
the same statistical characteristics as the time-use survey on
which it is based, notably in terms of state probabilities,
state durations, and number of state changes during the
course of a day. The developed model distinguishes three
important states of occupancy (corresponding to ‘absent’
(A), ‘present and active’ (P), ‘present and inactive’ (S)) and
is based on the 2019 ATUS data. ATUS is a yearly survey,
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supported by the U.S. Bureau of Labor Statistics and con-
ducted by the U.S. Census Bureau, that measures the amount
of time people spend doing various activities such as work-
ing, watching television, and sleeping (U.S. Census Bureau
2012). Information collected by the ATUS includes the start
and stop times of each activity (in minutes), where each
activity occurred, and whether the activity was done for a
person’s profession. Additional information on each respond-
ent, including age, gender, occupation, and region of resi-
dence, is also available (U.S. Bureau of Labor Statistics
(BLS), 2019). It should be noted that while researchers have
explored the limitations of TUSs for such applications
before, TUS datasets remain the sole source for occupancy
and activity data with a sufficient breadth of respondents to
be representative of the overall population and also smaller
sub-populations and are thus used as the database in this
study (Flett and Kelly 2016; Torriti 2014).

The model proposed in this study uses a first-order time-
inhomogeneous Markov chain technique and is based on the
2019 ATUS. The ATUS data consists of 24-hour long dia-
ries recoded at irregular time intervals depending on specific
activity durations starting at 4 am. The proposed model,
however, adopts a 10-min resolution and is configured to
run from midnight to midnight. Overall, the development of
the proposed occupancy presence model can be divided into
three subsequent steps: (1) data cleaning and processing, (2)
data clustering, and (3) model development procedure. In the
following sections, these steps are described in detail.

Step 1: Data cleaning and processing procedure

The goal of this step is to prepare and process the ATUS data
for use in the proposed occupancy presence model. For the
specific purposes of this study, only the Respondent and
Activity files from the ATUS database have been used as
input. In these files, the “TUCASEID” (a 14-digit identifier)
identifies each unique household, and every entry includes
activity-level information related to the specific activity code,
location, duration, as well as start and stop times (U.S. Bureau
of Labor Statistics (BLS), 2019). In the following sections, dif-
ferent sub-steps in this data cleaning procedure are discussed.

Step 1-1: Defining the presence states of the respondents for
all activities
First, a presence state of either present and active (P), pre-
sent and asleep (S), or away (A) is allocated to each diary

entry according to the respondents’ presence and activity
level during that specific activity. This information is
derived from the “TEWHERE” variable in the ATUS
Activity File. In the U.S. Bureau of Labor Statistics (BLS)
(2019), the TEWHERE variable is described as “where were
you during the activity?” and a value equal to 1 for this vari-
able stands for presence at the “respondent's home or yard”
(U.S. Bureau of Labor Statistics (BLS), 2019). It should be
noted that this variable is not collected for activities with
activity codes of 0101xx (sleeping or sleeplessness), 0102xx
(washing, dressing and grooming oneself), 0104xx (personal/
private activities), 500105 (respondent does not provide
information), or 500106 (gap/cannot remember) (U.S.
Bureau of Labor Statistics (BLS), 2019). In such cases, a
value of �1 is assigned to the TEWHERE variable in the
ATUS Activity File which indicates that the activity was
“out of universe” for the “where” question (U.S. Bureau of
Labor Statistics (BLS), 2019). Since most of the listed
unregistered activities are most probable to be happening in
one’s private living space, in this study it is assumed that a
value of �1 for TEWHERE is considered to be present at
home. Then, activity levels are determined and a presence
state of “Sleep” or “Present” is allocated to each of these
activities. Table 1 shows how a sample diary is interpreted
by this protocol.

Step 1-2: Creating 24-hour diaries for all respondents
While each respondent’s entire diary input in the 2019
ATUS database is meant to capture at least a full 24-hour
period (starting at 4:00 a.m.), not all are 24 hours long. In
other words, the duration of the last activity recorded deter-
mines the entire length of a respondent’s diary. However,
for the specific purposes of this study, it was necessary to
remove the extra parts of the diaries, resulting in one 24-
hour long diary per respondent. It should be noted that for
each activity recorded, two ATUS variables recorded in the
ATUS Activity File are essential for this step: (1)
“TUSTARTTIM” which stands for “activity start time,” and
(2) “TUSTOPTIME” which is defined as “activity stop
time” (U.S. Bureau of Labor Statistics (BLS), 2019).
According to the U.S. Bureau of Labor Statistics (BLS)
(2019), both of these variables can take any valid time value
between 00:00:00 and 24:00:00 (U.S. Bureau of Labor
Statistics (BLS), 2019).

To achieve one 24-hour long diary per respondent, in
each respondent’s diary, input the TUSTOPTIM for the last

Table 1. A sample diary from the ATUS tagged with presence states.

TRCODE Activity TEWHERE Presence state

030112 Picking up/dropping off household children 3 A
180301 Travel related to caring for & helping household children 12 A
020201 Food and drink preparation 1 P
110101 Eating and drinking 1 P
020203 Kitchen and food clean-up 1 P
010201 Waiting associated w/eating & drinking �1 P
120303 Television and movies (not religious) 1 P
010101 Sleeping 1 S
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activity recorded is defined as the stop time for the entire
diary. Then, the diaries that are longer than 24 hours are cut
to be no more than 24 hours long. To do so, if an activity
exists that its TUSTOPTIME occurs less than 24 hours away
from the defined stop time for the entire diary, then that
activity is broken into two parts, at 24 hours before the
defined stop time. The remaining portion after 24 hours is
then used as the initial activity entry.

It is now necessary to make sure that each diary starts at
midnight and finishes at a second midnight, 24 hours later.
This means that any activity entries that either occur on the
second day or overnight need to be modified. To do so, any
activities that start after midnight on the second day are
moved to the beginning of the diary. Then, if the second
midnight occurs between the TUSTARTTIM and the
TUSTOPTIME of the last diary entry, that entry is broken
into two parts at midnight. Then, the second part (the one
that starts at the second midnight) is moved to the beginning
of the diary while the first part is kept in its original spot at
the end of the diary. Figure 1 shows how a sample diary is
processed according to this procedure.

Step 1-3: Regulating the time steps for all recorded activities
While some time-use surveys are recorded in predefined
time intervals, the ATUS time steps are determined by the
duration of activities (Centre for Time Use Research 2017;
The French National Institute of Statistics and Economic
Studies (INSEE), 2010). Moreover, the temporal resolution
of the diary recordings in the ATUS is in minutes, while
previous studies have suggested that a 10-minute temporal
resolution is sufficient for the purposes of building energy
use studies (Mahdavi and Tahmasebi 2016; Richardson,
Thomson, and Infield 2008; Yan et al. 2015). Therefore, in
this step, each activity entry is broken into one or multiple
sequential 10-minute activity entries. The process begins at
midnight on the first night and the first activity’s duration is
modified to be exactly 10minutes long. Next, if the original
TUACTDUR for the first activity is more than 10minutes

long, a duplicate of that activity is redefined so that it starts
right after the first one and ends 10minutes later (e.g.
minute 20 of the entire diary). This process is repeated until
the TUSTOPTIME of the last duplicate goes beyond the
TUSTOPTIME of the original activity. Then, that
TUSTOPTIME marks the TUSTARTTIM of the next activ-
ity in the diary and the same process is repeated for this
activity and its succeeding activities until the TUSTOPTIME
for an activity marks the midnight for the second night
(Figure 2).

At this stage, the 24-hour diary inputs developed in the
last step (Step 1-2) are divided into 10-minute time slots and
are ready to be used in the occupancy presence model which
is explained in the next step (Step 3).

Step 2: Data clustering procedure

In Step 2, the diaries that were cleaned and processed in
Step 1 are clustered into homogeneous groups based on
select respondent and diary characteristics. These character-
istics are selected to be available to the average energy mod-
eler or other possible users of this model and include day of
the week, month of the year, meteorological season, housing
type, household size, and geographic region/division. It is
important to note that in situations where number of occu-
pants are unknown to the energy modeler, previous studies
(e.g. Agthe and Billings 2002) have suggested that the num-
ber of bedrooms has a high correlation with the number of
occupants in a residence and thus can be used as a proxy to
calculate the number of residents in the planning and
design stage.

First, it is common with occupant behavior models to
account for the differences between weekdays and weekend
days as occupancy patterns can vary significantly by the day
of the week. While some studies have only accounted for
differences between weekdays and weekends, others have
explored the possibility of separate occupancy schedules for

Fig. 1. An example of the Step 1-2 process for modifying the respondents’ diaries.
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Saturdays and Sundays. In some cases, every day of the
week is assigned a unique schedule. Figure 3 shows these
three different ways that days of the week have been clus-
tered in previous studies, using the 2019 ATUS database.
Each graph shows the percentage of ATUS population in a
specific presence state across the 24-hour period that diaries
is recorded in. As can be seen, the differences between
occupancy presence schedules among different working days
of the week are negligible. However, the presence schedule
between weekdays and weekend days is clear. As for the
variation in presence schedules between Saturdays and
Sundays, both of these days share the same general profile
for the sleeping state, while their active and away schedules
are not identical and show substantial differences in the
afternoon and evening hours of the day. Hence, the proposed
model in this study captures this diversity of presence and
activity profiles between weekdays, Saturdays, and Sundays.

Figures 4 and 5 show the ATUS 2019 databased clustered
based on the months and seasons of the year. The season
delineations are based on the meteorological season defini-
tions provided by U.S. National Oceanic and Atmospheric
Administration, which considers spring in the Northern
Hemisphere to include March, April, and May; summer to
include June, July, and August; fall to include September,
October, and November; and winter to include December,
January, and February (The National Oceanic and
Atmospheric Administration (NOAA), 2021). Looking at the
difference between different state profiles in different
months and seasons showed that the variety in occupancy
presence and activity schedules during different times of the
year is negligible. Therefore, the proposed model does not
take monthly and seasonal changes in occupancy presence
and activity schedules into consideration.

Another set of clustering efforts focused on the type of
housing. This variable is recorded under the “HEHOUSUT”
label in the ATUS-CPS File and can take any whole numer-
ical value between 1 and 12. Table 2 below includes the def-
initions of each of these values and shows the distribution of
this variable across the 2019 ATUS Respondent database.

All respondents that have indicated a HEHOUSUT vari-
able equal to 1 are clustered into one group, while all other
respondents are clustered into another group. As can be seen
in Figure 6, the housing type does not appear to affect the
presence profiles significantly and is thus not considered as
a clustering variable in the developed model.

Another variable is the location of the respondents’ resi-
dents. In the ATUS database, this variable includes two

values which indicate if a respondents’ place of residence is
located in either a “metropolitan” or a “non-metropolitan”
area (based on the delineation provided by the (U.S. Census
Bureau 2021). The results of this clustering analysis (Figure
7) show that the choice of metropolitan or non-metropolitan
housing type does not substantially affect occupancy pres-
ence schedules. Therefore, this variable is also not consid-
ered in the developed model.

Previous studies suggest that data on active occupancy
along with household size are the most important source of
information when assessing energy load profiles (Abu-
Sharkh et al. 2005). Therefore, the next set of clustering
efforts in this study is focused on household size and its
effect on occupancy schedules (Figure 8). It is evident that
while the sleep state profiles are generally the same between
different household sizes, the active and away profiles seem
to depend on the household size. Accordingly, respondents
from households with a higher number of members appear
to spend more time away from their place of residence dur-
ing the daytime hours. Therefore, the study’s proposed
model considers household size.

The final clustering considerations focused on the geo-
graphic location of the respondents. The variables GEDIV
and GEREG, which store the data related to the ATUS
respondents’ locations in terms of geographic division and
region respectively, are used for this analysis (U.S. Bureau
of Labor Statistics (BLS), 2020). Looking at the distribution
of different respondents in various geographic regions
(Figure 9) and divisions (Figure 10) showed little to no dif-
ference in presence states. Thus, the proposed model does
not account for the geographic location of the respondents
and considers all respondents’ schedules to be the same,
regardless of their location of residence.

Overall, the clustering analysis conducted showed that
only two variables show meaningful variation in occupancy
presence states across the 2019 ATUS database, including
household size and day of the week type.

Step 2-1: Creating group clusters based on the respondents’
household size
Previous studies suggest that data on active occupancy along
with household size are the most important source of infor-
mation when assessing energy load profiles (Abu-Sharkh
et al. 2005). Therefore, as a first step of the clustering pro-
cess, the respondents’ household sizes are determined, and
all respondents are grouped based on this variable. In the
2019 ATUS Respondent File, this information is available in

Fig. 2. An example of the Step 1-3 process for modifying the respondents’ diaries.
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the “TRNUMHOU.” Table 3 shows the distribution of this
variable across the 2019 ATUS Respondent database.

Step 2-2: Creating subgroups based on day type
Next, it is common with occupancy behavioral models to account
for differences between weekdays and weekends. Therefore, the
respondent groups created in the last step (Step 2-1) were divided
into subgroups based on the type of the day. The goal of this
step was to reveal the variance of the occupancy over a typical
week. In the 2019 ATUS Respondent File (and also the Activity
Summary File), “TUDIARYDAY” is the variable that holds this
information and is defined as the “day of the week of diary day
(day of the week about which the respondent was interviewed)”
(U.S. Bureau of Labor Statistics (BLS), 2019). Valid entries for
this variable are 1 through 7 for Sunday through Saturday,

respectively (U.S. Bureau of Labor Statistics (BLS), 2019). Table
4 shows the distribution of this variable within the defined groups
across the 2019 ATUS database.

Step 3: Model development procedure

Step 3 is the model development procedure that uses the
Markov chain technique to generate ATUS based occupancy
presence schedules with the cleaned data prepared and clus-
tered from the previous steps. For probabilistic models,
Markov chains are among the more common methods used
to stochastically model occupancy and predict occupancy
profiles (Mitra et al. 2020), allowing occupancy status to be
determined based only on the status at the previous time
(Flett and Kelly 2016). Therefore, in order to generate the

Fig. 3. Presence Status of ATUS respondents based on their diary recording day type.
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synthetic data, a random number (uniform from 0 to 1) is
picked at each timestep and used, together with the appropri-
ate transition probability matrix and with the state at the cur-
rent timestep, to determine the state at the next timestep.
The following steps describe the necessary calculations for
developing both the start state probabilities and the transition
probability matrices (Richardson, Thomson, and Infield

2008). A first-order Markov chain approach to predict
changes in occupancy was used in this research. While the
use of higher-order models has been previously shown to be
slightly more effective in predicting occupancy with accur-
acy, the added benefits of such techniques when compared
to a first-order model were minimal given the added com-
plexity (Flett and Kelly 2016).

Fig. 4. Presence Status of ATUS respondents by diary recording month.

Fig. 5. Presence Status of ATUS respondents by diary recording season.

Table 2. HEHOUSUT variable and its value descriptions.

HEHOUSUT Description % of ATUS data

1 House, apartment, flat 95.99%
2 Housing unit in non-transient hotel, motel, etc. 0.04%
3 Housing unit permanent in transient hotel, motel 0.03%
4 Housing unit in rooming house 0.00%
5 Mobile home or trailer with no permanent room added 3.31%
6 Mobile home or trailer with 1 or more rooms added 0.46%
7 Housing unit not specified above 0.11%
8 Quarters not housing unit in rooming/boarding house 0.00%
9 Unit not permanent in transient hotel/motel 0.00%
10 Unoccupied tent site or trailer site 0.00%
11 Student quarters in college dorm 0.00%
12 Other unit not specified above 0.06%
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Step 3-1: Calculating the start time probability distributions
In order to generate the Markov chain, a start state is needed
which describes how probable it is for an individual to be
present in their home at midnight at the beginning of the 24-
hour period. This should match the probabilities found in the

original ATUS data. For instance, out of the 704 entries
from three-person households in the weekdays subgroup, 62
indicated “P” (present and active) as their presence state at
00:00, 612 of them indicated “S” (present and sleeping), and
the remaining 30 were absent, i.e. “A.” Accordingly, the

Fig. 6. Presence Status of ATUS respondents based on their housing type.

Fig. 7. Presence Status of ATUS respondents based on their housing location type.

Fig. 8. Presence Status of ATUS respondents based on household size.
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chance of a respondent from a three-person household being
present and active at home at 00:00 on a weekday night was
set to be 8.81% (62/704¼ 0.09). Accordingly, in each sub-
group, the probability inputs are calculated (Equation 1),
where i can be “A,” “S” or “P.” These sets of calculations
were repeated for all the subgroups and then organized into
corresponding start time probability matrices (see the
Appendix).

Pi ¼ # of cases where start state ¼ i in the subgroup
# of cases in the subgroup

(1)

Step 3-2: Developing the transition probability matrices
The first-order Markov chain technique assumes each state
is dependent only on the previous state together with the
probabilities of that state changing. This set of probabilities
is held in “transition probability matrices” and are directly
derived from the ATUS data. As such, in each subgroup,
using Equation 2, 9 probability inputs are calculated for
each of the 144 defined 10-minute time steps, where i and j
can be the variables “A,” “S” or “P”:

Fig. 9. Presence Status of ATUS respondents based on their housing geographic division.

Fig. 10. Presence Status of ATUS respondents based on their housing geographic region.

Table 3. Household size based groups’ distribution across the
2019 ATUS database.

Household size Number of cases % of total

1 2575 27.29%
2 2972 31.50%
3 1428 15.14%
4 1463 15.51%
5 or More 997 10.57%

Table 4. Day type based subgroups’ distribution across the
2019 ATUS database.

Household size

Weekday Saturday Sunday

# % # % # %

1 1247 13.22% 657 6.96% 671 7.11%
2 1530 16.22% 666 7.06% 776 8.22%
3 704 7.46% 345 3.66% 379 4.02%
4 698 7.40% 378 4.01% 387 4.10%
5 or More 463 4.91% 235 2.49% 299 3.17%

784 Science and Technology for the Built Environment



Ti, j ¼ # of cases where start state ¼ i & end state ¼ j

# of cases where start state ¼ i
(2)

For example, for the three-person household weekday sub-
group example, of all the 30 respondents absent in the house
at 00:00, 1 reported that they were present and active in
their home at 00:10, and 0 reported being present and sleep
in their houses at 00:10. This means that TAP for this sub-
group was 3.33% (1/30¼ 0.03), TAS was 0% (0/30¼ 0), and
TAA was 96.67% (29/30¼ 0.97) at this timestep. These sets
of calculations were repeated for all the subgroups and then
organized into corresponding transition probability matrices
(included in the supplemental data).

Step 3-3: Generating the occupancy presence schedules
In order to generate occupancy presence schedules, first, the
start state was chosen by chosing a random number of pre-
sent occupants from the appropriate probability distribution
as calculated in Step 3-1. Subsequent states in the chain
were determined by selecting a random number for each
timestep and using this number with the appropriate transi-
tion probability matrix as defined in Step 3-2. The transition

probability matrices and the start state distributions of this
model (see the Appendix) were implemented in an R script
that uses the markovchian package (Spedicato et al. 2015).
In the following section, multiple example runs of the model
are presented, validated, and discussed.

Results

State durations

Figure 11 provides the duration of each of the three states for
all household sizes, according to their weekday type cluster.
The sleep state duration generally does not change much by
household size, while weekday type seems to play a larger role
in the mean duration of hours in the sleep state in comparison.
This is consistent with the findings of previous studies that
have suggested that weekdays and weekend days do not usu-
ally share similar sleeping patterns (Basner, Spaeth, and Dinges
2014; Khajehzadeh 2017). On the other hand, the duration of
present and away states seems to depend on both clustering cri-
teria. Figure 11 generally shows that as the household size
becomes larger, occupants tend to spend less time being

Fig. 11. State durations in the 2019 ATUS data based on household size and weekday type.

Fig. 12. Correlation between synthetic data and ATUS 2019 data in terms of state durations.
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present and active in their place of residence and spend more
time being away instead. This is not surprising, given that the
ATUS diaries are filed by a designated person (DP) from each
household being represented that is at least 15 years of age
(U.S. Census Bureau 2012). Therefore, younger household
members that might spend more time at home are not included
in the ATUS database.

Figure 12 compares the states duration of occupancy
states for the synthetic and original data for all possible
three states. In these figures, the Pearson Correlation values
for mean state durations among different household sizes are
compared between the original 2019 ATUS data and the
synthetic data produced by the model. Overall, the synthetic
data appears to capture the variations in durations shown by
the original data with 3500 runs being the optimal number
of simulation runs for the model.

Number of state changes

The principle aim of the model is to provide a basis for
energy performance simulations and studies. Therefore,

there is a particular need therefore to ensure the model
accurately accounts for the proportion of time that dwell-
ings are occupied or occupied by non-active occupants.
Figure 13 shows the probability distribution of the number
of times occupants in each household size cluster have
changed their presence state in 24 hours. The data shown
represent the means across original 2019 ATUS dataset, clus-
tered by weekday type and household size. The majority of
changes in presence state for all clusters occur in odd number
during a 24-hour period which corresponds to waking up in the
morning and going back to bed at night in addition to other
activities throughout the day. Accordingly, those with 5 and 7
state changes were the most common type of schedules across
all represented clusters.

As for the comparision of the number of state changes in
the original ATUS data with synthethic data generated by
the Markov chain model proposed, synthetic data appeared
to capture the variations in durations shown by the original
data relatively well (Pearson Correlation > 80% for 5000
runs per cluster). Moreover, it is suggested that a higher-
order Markov chain model should be able to improve these

Fig. 14. Improvement in the Pearson Correlation values between synthetic data and ATUS 2019 data in terms of number of state
changes (Note: HHx¼ household size, where X is the # of people in the household).

Fig. 13. Number of state changes in the 2019 ATUS data based on household size and weekday type (Note: HHx¼ household size,
where X is the # of people in the household).
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correlation values in future studies. Figure 14 here shows
the improvements in the model’s predictions of the number
of state changes based on the number of simulation runs per-
formed. As shown, after 4500 runs, the improvements being
made are minimal in all clusters (less than 1%). These
improvements are measured by calculating the Pearson cor-
relation for the mean number of state changes between the

two dataset (synthetic and original data) for different number
of simulation runs.

State probabilities

Figure 15 compares the state probabilities for differenet
household size clusters for weekdays, Saturdays, and

Fig. 15. Verification of state probabilities (y-axis) for different subgroups by comparison of the original ATUS data (P) with synthetic
data (P0) (Note: HHx¼ household size, where X is the # of people in the household; P¼ present and active, A¼ absent, S¼ present
and inactive).
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Sundays for the time-use survey and the synthetic occupancy
data generated by the model. The time-use survey data is
based on the average across each cluster, while the synthetic
data is based on 5,000 runs of the model for that cluster.
Overall, the profiles show expected features including a low
proportion of activity at night, a tendency for people to be
out of their home during the day, and peaks in activity
around meal times. The original and synthetic data shown in
Figure 15 are generally in close agreement. The root-mean-
square error in state probabilities has been checked for all
combinations of number of residents and day types and all
combinations show the same trend according to which errors
are in the range of 1% to 5%. In general, therefore, it can be
said the first-order Markov chain technique accurately repro-
duces the state probabilities found in the original data.

Conclusions

Occupancy schedules are often recognized as a leading
source of uncertainty in building energy simulations and this
uncertainty results in an undesired gap between actual per-
formance and predictions. To address this issue and with the
aim of increasing the reliability and accuracy of occupancy
behavioral inputs of building energy models, in the recent
years, many stochastic building occupancy models have
been proposed as a replacement for the conventional generic
static schedules. Such stochastic models commonly use
time-use surveys (TUS), which are large nationally represen-
tative surveys of how people use their time, as their input.
This paper describes the development of a three-state sto-
chastic occupancy model based on the 2019 American Time-
Use Survey (ATUS) data that takes account of differences
between weekdays, Saturdays, and Sundays. In this stochas-
tic occupancy model, survey respondents are clustered based
on the number of residents in their households. A first-order
inhomogeneous Markov chain technique is used to generate
occupancy presence schedules such that it has the same
overall statistics as the original ATUS data, notably in terms
of state probabilities and state durations. The high-resolution
representative occupancy data that this model generates can
be used as input to any residential energy modeling tool that
uses occupancy time-series as a base variable. The main
advantages of this model compared to those that have been
previously proposed are related to the simplicity and practi-
cality of the model. The availability of the required inputs as
well as the compatibility of the resulting outputs’ formatting
for implementation in conventional energy simulation tools
make it optimal for use in future building energy modeling
efforts instead of the commonly used static generic sched-
ules proposed by standards and guidelines.

One limitation of this study is that ATUS data was uti-
lized which is self-reported data and human error can influ-
ence self-reported data. Several recent papers have discussed
the comparison between other nationwide datasets such as
the Residential Energy Consumption Survey (RECS) data
and ATUS data (Mitra et al. 2019, 2020). Thus, to further
validate these findings related to occupancy schedules, it

would be beneficial to compare the results with the
Residential Energy Consumption Survey data or other
national level datasets. However, due to unavailability of
occupancy scheduling data in this and other datasets, the
comparison cannot be completed at this time. Preliminary
studies of the incorporation of the developed model’s out-
puts in building energy simulation has shown promising
results in terms of practicality and ease of use(Malekpour
Koupaei et al. 2019a, 2019b, Malekpour Koupaei, Geraudin,
and Passe 2020; Passe et al. 2020). Future work will include
the optimization of this model for compatibility with co-
simulation tools such as the Building Controls Virtual Test
Bed (BCVTB). This will allow users to evaluate the impact
of the developed occupancy schedules on the energy per-
formance of residential buildings.

Nomenclature

HHx ¼ household size
Pi ¼ probability of occupants’ start time being I in the

original ATUS data
P0i ¼ probability of occupants’ start time being I in the

synthetic data
Ti,j ¼ transition probability between state i and state j
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Appendix

Tables A1–A3 below include start time probabilities for
different household size clusters on weekdays, Saturdays,
and Sundays. It should be noted that the presented values in
this section are rounded up to two decimal values for
readability and thus, in some cases might not add up to be
100% exactly.

Table A1. Start time probabilities of different household sizes
in weekdays based on the ATUS 2019 data.

Household size

1 2 3 4 5 or more

P(A) 3.29% 2.61% 4.26% 3.01% 4.10%
P(S) 83.48% 87.52% 86.93% 87.25% 86.39%
P(P) 13.23% 9.87% 8.81% 9.74% 9.50%

Table A2. Start time probabilities of different household sizes
on Saturdays based on the ATUS 2019 data.

Household size

1 2 3 4 5 or more

P(A) 5.94% 4.35% 6.09% 6.61% 7.23%
P(S) 77.47% 83.48% 81.74% 81.48% 81.28%
P(P) 16.59% 12.16% 12.17% 11.90% 11.49%

Table A3. Start time probabilities of different household sizes
on Sundays based on the ATUS 2019 data.

Household size

1 2 3 4 5 or more

P(A) 3.43% 1.68% 2.37% 2.84% 3.01%
P(S) 84.95% 88.40% 91.29% 87.60% 88.96%
P(P) 11.62% 9.92% 6.33% 9.56% 8.03%
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