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Abstract  

Urban vegetation is known to be effective in mitigating 

the Urban Heat Island (UHI) effect and reducing building 

energy use, specifically that associated with cooling. 

However, to quantify urban trees’ cooling effect, the 

influence of their characteristics on cooling effectiveness 

and the corresponding building energy use needs to be 

assessed quantitatively and reflected in energy simulation 

efforts. In this study, a modelling framework is introduced 

to facilitate the integration of high-resolution geometries 

for trees in urban energy simulation models. A 

preliminary study of this modelling framework showed 

that our enhanced tree models can predict cooling loads 

that are as much as 2.2% lower than those predicted with 

the simplified tree models that are typically used. This 

enhancement in modelling can address current 

shortcomings for predicted and actual energy 

consumption of buildings.  

Key Innovations 

• A comprehensive set of tree-related factors that 

have previously been established as important 

for cooling demand of buildings is identified. 

• All of these previously identified tree-related 

factors are integrated into this enhanced 

modelling framework. 

Practical Implications 

The modelling framework introduced in this study 

supports development of high-resolution tree models for 

urban energy use studies. This framework can be used to 

address frequently observed differences between 

predicted and actual energy loads of buildings, and lead 

to more realistic energy consumption predictions using 

urban energy simulation tools. 

 

Introduction 

In most urban areas the temperature at the heart or the 

canter of the city is higher than suburban and surrounding 

near-urban areas. This phenomenon is typically referred 

to as the Urban Heat Island (UHI) effect (O’Malley et al., 

2015). Rapid urban expansion is exacerbating the UHI 

phenomenon and causes higher urban energy 

consumption in order to cool buildings, or when cooling 

is not possible it leads to lower thermal comfort with 

significantly increased risks to human health 

(Rosenzweig et al., 2011; Tan et al., 2016; Wang & 

Akbari, 2016). In addition, UHI effects are also amplified 

by the effects of climate change in many warm and humid 

regions, so the ability to mitigate against the impact of that 

can also diminish the negative effects of climate change.   

Urban vegetation (specifically trees) can play a significant 

role in UHI mitigation and adaption (Yumino et al., 

2015). Trees alter local climates within urban areas 

through (1) shading, which reduces the amount of radiant 

energy absorbed and stored by built surfaces; (2) 

evapotranspiration, which converts liquid water in plants 

to vapour, thereby cooling the air; and (3) wind speed 

reduction, which reduces infiltration of outside air, the 

effectiveness of ventilation, and convective cooling of 

building surfaces (Nowak et al., 2017; Simpson, 2002). 

These alterations to local climate generally reduce 

building energy consumption during the cooling season 

(Heisler, 1986). However, during the winter season, when 

heating energy use determines consumption loads in 

buildings, trees can actually increase energy use (Heisler, 

1986). This increase is commonly associated with the 

shade that trees cast on buildings, particularly those that 

are located on the south side of buildings in the northern 

hemisphere (Heisler, 1986; McPherson, 1984). While 

such effects are greater for evergreen trees, deciduous 

trees also cast winter shade and may block up to 35% of 

incoming solar radiation even during their leaf-off season 

(McPherson, 1984).  

While earlier studies suggested that use of trees around 

buildings to reduce energy consumption is efficient, in 

order to clarify the cooling effect of urban trees the 

influence of specific tree characteristics on building 

energy use in urban environments needs to be 

quantitatively assessed and understood. The most 

important characteristics of trees previously identified to 

affect the energy demands of buildings include: (1) tree 

height, (2) distance between trees and buildings, (3) tree 

canopy density, and 4) tree species (Hsieh et al., 2018). 

Therefore, the extent to which urban forestry can mitigate 

for UHI and climate change effects depends in large part 

on the development of better tools to account for these 

characteristics and quantify the cost-effectiveness of 

alternative strategies to more clearly demonstrate their 

potential benefits (Simpson, 2002). 

The focus of this paper is the development of an improved 

modelling framework for estimating the amount and 

timing of shading from trees and its effects on cooling and 

heating energy use in residential buildings. The proposed 



modelling framework is then applied to a case study, and 

the sensitivity of the model to different tree geometries is 

studied in detail. The findings of this study can provide 

insights to guide better urban designs that include trees to 

increase resiliency to anticipated climatic challenges. 

Methods 

Study area 

The Capitol East neighbourhood in Des Moines, Iowa 

(located at 41.6°N latitude and 93.6°W longitude) was 

chosen for this pilot study because civic officials had 

expressed a commitment to development of a sustainable, 

equitable city. This neighbourhood is a resource-

vulnerable neighbourhood and is considered 

representative of many mid-sized US city 

neighbourhoods that are affected by climate change. The 

Polk County Health Department (PCHD), with 

jurisdiction over Des Moines and adjacent suburban/rural 

communities, has indicated a need for improved 

knowledge about vulnerability of residents to extreme 

heat in these areas. The neighbourhood is comprised of 

predominantly older single- or multi-family residential 

properties, some occupied by more than one household 

(Iowa State University Planning Team, 2014). 

This setting offers unique, often underestimated 

challenges related to climate change especially for 

increased frequency and intensity of heat waves. The area 

has harsh, cold winters with design temperature of -

19.4°C and hot, humid summers with design conditions 

of 32.4°C dry-bulb / 23.8°C wet-bulb temperatures 

(ASHRAE, 2009). Extreme heat conditions can be as high 

as 38°C (ASHRAE, 2020). For a standard house in the 

urban core, active heating and cooling energy systems are 

required throughout the year to manage internal comfort 

(Passe et al., 2020). However, the existing residential 

building stock in resource-vulnerable neighbourhoods 

like Capitol East typically have little insulation, older 

windows and leaky building envelopes with very low R-

values. Additionally, up to 50% of homes in the most 

vulnerable neighbourhoods, and 25% in the case of the 

Capitol East neighbourhood specifically, do not have 

functional central air conditioning (AC) systems and thus 

rely only on natural ventilation in summer possibly 

enhanced by the use of fans (Polk County Health 

Department [PCHD], 2015, 2019).  

Modelling framework 

Tree shade effects on building energy use are attributed to 

tree configuration, building characteristics, and/or 

climate. The major characteristics of trees that affect 

energy demand of buildings are tree height, position 

relative to the built structure, tree canopy shape and 

density, tree species, and duration of the leaf-on period.  

For this case study, tree data for 1142 neighbourhood 

trees were collected in an inventory during the summer of 

2017 using a Trimble Geo 7X Handheld GNSS receiver. 

The data collected included tree species, trunk diameter, 

tree height, canopy shape/height, canopy width in two 

dimensions, and latitude/longitude coordinates. The 

framework introduced in this study for developing high-

resolution tree models is based on input from this 

comprehensive tree inventory (Figure 1).  

As the first step in this framework, tree trunks were first 

modelled as simplified cylinders using the base location, 

trunk radius, and tree height as input to the model. Then, 

each tree canopy in the inventory was classified under one 

of the following eight representative tree canopy shapes 

to facilitate modelling: (1) spheres, (2) ellipsoids, (3) 

cylinders, (4) cones, (5) horizontal rectangular cuboids, 

(6) vertical rectangular cuboids, (7) umbrella shapes, and 

(8) paraboloids. One of these eight tree canopy shapes 

(Figure ) were created for each of the catalogued trees 

using the two-dimensional canopy parameters as well as 

canopy height to define canopy shape.  

Figure 1: Overview of the framework for creating high-resolution tree geometries for use in urban energy modelling 

simulations 
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Shade, defined as the percentage of sky covered by foliage 

and branches within the perimeter of individual tree 

crowns, is commonly used to model the effects of trees on 

building energy use (McPherson et al., 2018). To account 

for shading by trees, the leaf-on period of trees based on 

their species was determined using tables provided by 

McPherson (1984) and adjusted for the selected case 

study’s unique climate based on our expert opinion 

(Appendix A). This was determined for deciduous trees in 

particular. Then tree species, climate, and diameter at 

breast height were used to calculate shade factors for both 

leaf-on and leaf-off seasons (based on McPherson et al., 

2018). 

 

  

Figure 2: Eight representative tree canopy shapes used 

for modelling (Adapted from Hashemi, Marmur, Passe, 

& Thompson, 2018) 

 

These detailed tree inventory data were then converted 

into a GIS shapefile and integrated with a building data 

GIS shapefile from the city assessor’s database  which 

contained building footprints, elevations and parcel-level 

data for 340 buildings within the same neighbourhood. 

The combined tree and building data were then integrated 

into the urban modelling interface (umi) using the GIS 

data-parsing plug-in Meerkat (Error! Reference source 

not found.). The umi is a Rhinoceros-based design tool 

for which the underlying simulation engines are US 

DOE’s flagship  EnergyPlus, Radiance/Daysim, as well 

as a series of Grasshopper and Python scripts (Reinhart et 

al., 2013). Each month was simulated with a different 

model to account for differences between leaf-on and 

leaf-off period and the associated shade factors for all 

trees modelled. 

Results 

The model provided input for umi to simulate energy 

performance of each building in the neighbourhood area 

for three different tree modelling scenarios under five 

different climate assumptions (Figure 4).  

 

 

 

Figure 4: A schematic diagram of the three tree 

modelling scenarios studied 

 

The tree modelling scenarios considered here include: 

(1) A simplified model with tree geometries that did not 

account for leaf-on periods of trees and with the 

assumption that all trees had a constant shading factor 

equal to full shade for the entire year of study; 

(2) A detailed model with high-resolution trees that 

accounted for leaf-on periods and the varying shading 

factors associated with them; and 

(3) A model without any of the trees.  

For the climate assumptions, the following five weather 

datasets (Figure 5) were used in the reported sensitivity 

analysis:  

(1) A typical weather data file in the Typical 

Meteorological Year (TMY3) format for the Des Moines 

International Airport that consists of 12 typical 

meteorological months (January through December), with 

individual months selected from different years of the 

period of record (1991-2005) (Rabideau et al., 2012). This 

dataset was obtained from the official EnergyPlus website 

(EnergyPlus, n.d.). 

(2) An actual weather file for the year 2017 in the selected 

location (41.53° N, 93.65° W) was obtained from the 

National Solar Radiation Database (NSRDB) and 

formatted according to the TMY3 manual (US Energy 

Information Administration (EIA), n.d.; Wilcox & 

Marion, 2008). Hereafter this dataset is referred to as 

“Actual 2017 Meteorological Year” or “ACM.” 
Figure 3: Aerial view of the Capitol East neighborhood 

as modeled in the umi environment 



(3-5) Three future weather files were used for the 

simulation of energy consumption by residential building 

stock. These Future Typical Meteorological (FTMY) 

datasets were prepared by Patton (2013) who combined 

the projected changes in climate with existing TMY3 data 

to create FTMY datasets that represent high, medium and 

low emission scenarios of FTMY for the 2041–2070 

period. In this manuscript, these three datasets are referred 

to as “FTMY-High”, “FTMY-Medium”, and “FTMY-

Low,” respectively. 

 

 

 

Figure 2: Comparison of different climatic assumptions 

considered for modelling 

 

In the baseline scenario, all trees were included to provide 

simplified shading geometry in the model, all buildings 

were assigned an appropriate template according to the 

assessor’s data, the ASHRAE 90.1 schedule was used for 

occupancy, and TMY3 data for Des Moines were used as 

the weather database. As the first step in the analysis, an 

annual profile of normalised monthly energy 

consumption was generated for this scenario (Figure ). In 

this model, January had the maximum total monthly 

operational energy-use intensity (EUI) of all months with 

an average of 25.3 kWh/ m2 (8 kBTU/sf) and May had the 

lowest of all months with an average of only 2.9 kWh/ m2 

(0.9 kBTU/sf). Accordingly, the annual EUI of a typical 

house in this neighbourhood is predicted to be 120.9 kWh/ 

m2 (38.3 kBTU/sf). For a typical house with AC in this 

scenario, the comparable annual EUI is 134.9 kWh/ m2 

(42.8 kBTU/sf), while the EUI for a typical naturally- 

ventilated house is predicted to be only 114 kWh/ m2 

(36.1 kBTU/sf). It is important to note that the term 

‘typical’ is used here for a building where the EUI is equal 

to the average of all residential buildings in the model. 

 

Figure 6: Energy-use intensity (EUI) in the baseline 

scenario for low-resource neighborhoods in Des Moines, 

Iowa. 

 

Generally, comparing Scenario 1 under different climatic 

assumptions, heating loads are expected to decrease in the 

projection period, while cooling loads are expected to 

increase. These changes depend on the magnitude of 

climate change-induced ambient temperature increases 

over the next five decades. Looking at the simulation 

results from 2017, the impact of longer periods during 

which there is greater need for cooling can already be 

observed in energy consumption of the buildings 

modelled (Figure ). Overall, including trees in the model 

(Scenarios 2 and 3) results in a general decrease in cooling 

loads and a general increase in heating loads. This is 

consistent with findings of previous studies (e.g. Davis et 

al., 2016; Tabares-Velasco & Srebric, 2012; Ziter et al., 

2019) that had linked urban greening with a reduction in 

building cooling loads due to shade and 

evapotranspiration effects. In the case of the models with 

detailed trees (Scenario 2) the reduction is cooling load is 

lower than that for the simplified model under all five 

climatic assumptions considered in this study (Figure ). 

The difference between the two models developed under 

Scenarios 1 and 2 is greatest for the model that uses the 

actual 2017 meteorological year data for its climatic 

condition (2.2%). Accordingly, in the Baseline Scenario, 

the detailed model (Scenario 2) indicates that the cooling 

loads are expected to be 19.8 kWh/m2 (6.3 kBTU/sf), 

while the simplified model (Scenario 1) predicts an 

annual cooling consumption of only 19.5 kWh/m2 (6.2 

kBTU/sf). These results suggest that an accurate and 

reliable prediction of cooling loads with simulation tools 

is not possible without including high-resolution tree 

geometries. Such geometries need to account for both 

general geometric properties and shade factors throughout 

the period of study. 

Heating loads are also affected by urban vegetation, as 

shading could diminish solar heat gains during the winter 

months. Comparing the model including detailed trees 

(Scenario 2) to the model with simplified trees (Scenario 

1) there was less discrepancy in results (compared to that 

for cooling loads). This suggests that a simplified model 

might be sufficient for representing the effect of trees on 

heating loads in urban energy models. 



 

 

Figure 7: Comparison of current and future projected 

climate scenarios on annual energy consumption. Note: 

TMY = typical meteorological year; and FTMY = future 

typical meteorological year. 

 

Average annual household utility costs were also 

determined for the baseline scenario for a typical building 

with a total living area of 110 m2 (Figure ). A typical 

household in this neighbourhood spends an average of 

US$710.7 on energy expenditures (US$442 electricity, 

US$268 natural gas) per year. Considering that the 

majority of households in this neighbourhood are 

categorised as low income (annual income levels of under 

US$30,000, less than 80% of Des Moines residents’ 

median income), energy use accounts for at least 2.4%, 

and in many cases a much larger proportion, of residents’ 

annual income before taxes (Drehobl & Ross, 2016; U.S. 

Census Bureau, n.d.). This is consistent with previous 

studies which indicated that an American family with less 

than US$30,000 annual income would spend 

approximately 7% of before-tax income (or 23% of after-

tax income) on energy costs (Drehobl & Ross, 2016; 

Kontokosta et al., 2020; U.S. Government Publishing 

Office, 2015). Such residents are thus the most vulnerable 

to energy price increases, as well as potential costs 

associated with increases in energy consumption due to 

extreme climatic conditions (Kontokosta et al., 2020; U.S. 

Government Publishing Office, 2015). 

 

 

Figure 8: Energy burden costs in the baseline scenario 

for low-resource neighborhoods in Des Moines, Iowa. 

 

Based on these data, the annual energy expenditure for a 

typical house with AC in this neighbourhood is US$860, 

which represents at least 2.9% of their annual pre-tax 

income. Households with naturally-ventilated homes, on 

the other hand, are expected to spend about US$637, or at 

least 2.1% of their annual pre-tax income, on energy 

expenditures in the baseline scenario. While the relative 

increase in energy consumption is higher comparing these 

two scenarios, the effect of detailed tree data for 

modelling annual energy expenditure were less 

noticeable. This is because heating loads are dominant in 

the studied climate, and an increase in cooling loads does 

not affect annual energy expenditure as much.  

Conclusion 

The challenges encountered for developing a high-

resolution urban energy model with tree geometries that 

accurately represent the actual setting were significant. 

Our preliminary results indicate a relatively modest effect 

of trees on potential cooling savings, but the model and 

simulation does not yet include evapotranspiration, which 

is likely to increase the effect of trees on building energy 

dynamics, as suggested by other researchers (Hsieh et al., 

2018; Wang & Akbari, 2016). Moreover, the main goal 

for developing high-resolution tree geometries for trees 

was related to increasing the fidelity between predicted 

and actual energy consumption of buildings in urban 

energy models. Accordingly, our results indicate a 

significant step toward meeting this goal compared to 

performance gaps previously outlined by other 

researchers (e.g., Fedoruk et al., 2015; Zou et al., 2018).  

A potential drawback of this framework is the amount of 

effort required to build a comprehensive tree inventory 

dataset. Although many municipalities have some data for 



street trees, there are relatively few comprehensive urban 

forest inventories that include so much information on 

canopy dimensions, the degree to which the canopy is 

filled with leavers, and fewer still include such data for 

trees on private properties. It may be that the development 

of specific empirically-based models will allow 

calibration of models using other available data (such as 

LiDAR imagery with detail for tree canopy shape and 

size) in the future. Further cross-variable simulations are 

planned to explore and refine these preliminary outcomes. 
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Appendix A 

 
Table 1: Estimates for Leaf-on Duration for Tree Species Present in the Capitol East Neighborhood, Des Moines, IA 

SPECIES JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

American Basswood          On On On On On On     

American Elm          On On On On On On     

American Sycamore          On On On On On On     

Amur Cork Tree          On On On On On On     

Bitternut Hickory          On On On On On On     

Black Locust          On On On On On On     

Black Maple          On On On On On On     

Black Oak          On On On On On On     

Black Walnut            On On On On       

Black Willow        On On On On On On On     

Blue Spruce  On On On On On On On On On On On On 

Boxelder          On On On On On On     

Bur Oak          On On On On On On     

Callery Pear          On On On On On On     

Cherry spp          On On On On On On     

Common Hackberry          On On On On On On     

Cottonwood        On On On On On On       

Crabapple spp          On On On On On On     

Eastern Red Cedar  On On On On On On On On On On On On 

Eastern Redbud            On On On On       

Eastern White Pine  On On On On On On On On On On On On 

Elm Hybrid          On On On On On On     

Green Ash          On On On On On On     

Hackberry          On On On On On On     

Honey Locust            On On On On On     

Japanese Lilac          On On On On On On     

KY Ceetree            On On On On On     

Littleleaf Linden          On On On On On On     

Maple spp          On On On On On On     

Mulberry spp          On On On On On On     

Northern Catalpa          On On On On On On     

Northern Hackberry          On On On On On On     

Northern Red Oak          On On On On On On     

Northern White-cedar  On On On On On On On On On On On On 

Norway Maple          On On On On On On     

Norway Spruce  On On On On On On On On On On On On 

Oak spp          On On On On On On     

Ohio Buckeye            On On On On On     

Paper Birch          On On On On On On     

Pear spp          On On On On On On     

Plum spp          On On On On On On     

Red Maple          On On On On On On     

Saucer Magnolia        On On On On On On       

Siberian Elm          On On On On On On     

Silver Maple        On On On On On On On     

Slippery Elm          On On On On On On     

Sugar Maple          On On On On On On     

Swamp White Oak          On On On On On On     

Sycamore          On On On On On On     

Tree of Heaven          On On On On On       

Tulip Tree (Y. Pop)          On On On On On On     

White Ash          On On On On On On     

White Mulberry          On On On On On On     

White Oak          On On On On On On     

 


