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Overview

Goal:

Build, calibrate, and validate urban energy models for three “East Bank” neighborhoods in the
City of Des Moines, lowa, which can then be generalized to other communities and locations for
the purpose of aiding in decision making

Approach:

integration of diverse data sets through data driven models describing human behaviors, building
energy dynamics, and near-building climates to create a complex urban systems framework for
modeling and simulation.

ABM modeling conducted to determine the effects of different policy levers on increasing
residential weatherization adoption, including: Availability/characteristics of government-funded
assistance programs;

Combining empirical data for local climate and microclimate (as influenced by vegetation and
compiled based on an onsite inventory), with modeling data for climate change projections
(based on the North American Regional Climate Change Assessment Program (NARCCAP)
data) and human behaviors (through surveys and ABM outputs) to predict energy use dynamics.

Current Results:

Differentiated energy use schedules developed based on local data collection through surveys
and action projects at various community events

A hybrid physics data modeling framework in development to combine building and near-building

(vegetation) thermal conditions using computational fluid dynamics (CFD) models.
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Urban Vegetation
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The urban issue

Science Museum of Virginia webinar on extreme heat
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Union of Concerned Scientists

Extreme Heat & Climate Change

HOW OFTEN WILL YOU ENDURE EXTREME HEAT WHERE YOU LIVE?

Killer Heat in the
United States:

This tool shows the rapid increases in extreme heat projected to occur in locations across

the US due to climate change. Results show the average number of days per year above a

Climate Choices selected heat index, or “feels like” temperature, for three different time periods: historical,
and the Future of midcentury, and late century.

Dangerously Hot

Days (2019) The results highlight a stark choice: We can continue along our current path, where we

fail to reduce heat-trapping emissions and extreme heat soars, or we can act decisively now
and stop the worst from becoming reality.

TYPE IN YOUR LOCATION (CITY OR COUNTY) HOW HOT
a Des Moines, |A Above 100° v m
WHERE WE ARE NOW WHERE WE ARE CURRENTLY HEADED WITH BOLD ACTION
Historically Midcentury Late Century Extreme Heat
1971-2000 average 2036-2065 average 2070-2099 average Limited to
DAYS PER YEAR DAYS PER YEAR DAYS PER YEAR DAYS PER YEAR

The choice is clear: We can limit future extreme heat events but we must take bold action
now to address the climate crisis.
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The Midwestern Climate Challenge

The likelihood of extreme heat events is predicted to
iIncrease markedly in the Midwest region of the
United States. By mid-century (2036-2065), one
year out of 10 is projected to have a 5-day period
that is 13°F warmer than a comparable earlier
period

. (1976-2005; Melillo et al. 2014).
Nearly 50% of homes in low-income
neighborshoods in this region do not have
functioning central air-conditioning.

. (Polk County Health Department Assessor Data)
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Microclimate Characterization

Site |
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Patton, S. L. (2013). Development of a future typical
meteorlogical year with application to building energy use.

(Master of Science Thesis), lowa State University, Ames, lowa. ‘t t RADIATION T SPACE
(Paper13635). oo Ry _____________ _ 2 o

Kalvelage, K., Dorneich, M., & Passe, .. __ SO 00Ww /—/ B e e
U. (2015, 7-9 Dec). Simulating the __ ClwupLAyer ( WATER R Ty
future microclimate to identify T 4
vulnerable building interior conditions. ~ SURFACE REFLECTANCE A,

Proceedings of the 14th International > ‘i FRUACH IR VE%EOTL%IEE

Conference of the International
Building Performance Simulation
Association, Hyderabad, India.

IOWA STATE UNIVERSITY Sustainable Cities PIRI




Urban Context and Weather History
lowa

Temperature History in 2017, Des Moines, |A
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Urban surface energy balance
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East Bank Neighborhoods /
Des Moines, lowa ,ﬂm\

ciry or DES MOINES

North America Towa Polk County Des Moines

Median income is less than half that of Des Moines
Strong neighborhood associations

Have participated in a revitalization program

Large youth population

Multilingual communities
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Urban heat island
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The framework
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UHI impacts (monthly pattern)

Monthly electricity use for cooling (N1) Monthly gas use for cooling (N1)
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UHI impacts (diurnal pattern)
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Urban Context and Weather History
lowa
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Temperature profiles of three homes during a July 2017 extreme heat event
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Precipitation

Transpiration . Canopy interception

& evaporation

Stormwater Benefit
of Trees

- Intercept rainwater on
leaves and branches

- Divert rainwater into soil

- Use rainwater,
increasing the runoff
storage potential Impervious

- Release rainwater back
into the atmosphere
through transpiration =

cool the air Infilbration BT

Roots take up soil
moisture, increasing
runoff storage potential
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Population below poverty (%)
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A comprehensive tree inventory

1) More detailed and comprehensive
inventory in Capitol East include tree
canopy shapes, dimensions and

condition ratings for:

509 (100%) street trees

1141 (~45%) of yard trees (central and northeastern
C.E)

2) Interactions with community

During inventory activities
Capitol East Neighborhood National Night Out event -

local residents, Park and Recreation personnel and local
police - TR

IOWA STATE UNIVERSITY Sustainable Cities PIRI



Temperature reduction depends on

....Distance

Urban Forestry students conducting inventory

supervised by Dr. Janette Thompson and
Breanna Marmur

A B G D E F G H \ | K M N
0 3 : Height_to_li Canopy_ Canopy_
el Land Use RIERE Y, Species %7(,.3.11 A Shape 1 D.BH HICIEHE 1 ve crown North So East Wes Latitude Longitude
e ID ard Filled (in) _top (ft) i e e

il (ft) uth (ft) t (ft)

2 1001 Residential Yard Mulberry spp 60 Umbrclla 16 26 8 18 16 41.593210108 -93.590604187
3 1002 Residential Yard N. Hackberry 90 Ellipsoid 5 16 1 8 9 41.593210727 -93.590693415
4 1003 Residential Yard Silver Maple 65 Paraboloid 25 36.9 12.1 40.2 36.2 41.592823056 -93.590591690
5 1004 Residential Yard Mulberry spp 85 Umbrella 13 24.5 7 19 27 41.592912068 -93.590616213
6 1005 Residential Yard Silver Maple 80 Paraboloid 29.5 63.1 13 41 43 41.592919988 -93.590642176
7 1006 Residential Yard Jap. Lilac 90 Umbrella 3 14 1 13 12 41.592958102 -93.590709942
8 1007 Residential Yard Swamp W. Oak 75 Ellipsoid 14 47.2 16 27 28 41.593006890 -93.590722754
9 1008 Residential Yard Siberian Elm 75 Paraboloid 325 54.2 203 413 44 41.593015729 -93.590754270
10 1009 Residential Yard Tree of Heaven 80 Umbrclla 37 65 13 39 41 41.593134643 -93.590789050
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8 Tree shapes

spheres, ellipsoids, cylinders, cones, horizontal rectangular cuboids, vertical rectangular cuboids, umbrella shapes, and
paraboloids
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Integrating Urban Trees into Energy Models
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“Baked” visualization model in Rhinoceros

Buildings indicated in blue are
those with more than 5%
reduction in cooling demand for
the scenario with trees.

Umi, Rhino based design
environment
http.://www.urbanmodeling.net/.

24

IOWA STATE UNIVERSITY Sustainable Cities PIRI


http://www.urbanmodeling.net/

Results

* Trees resulted n 1% to 20%
potential active cooling energy
savings for spring and summer
months (May to September).

e There were approximately 40
buildings with potential cooling
energy savings more than 5%.

* Nearly all buildings showing substantial differences in cooling demand in
the model with trees are well shaded by trees, especially those located
south of buildings.

25
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Tree size and velocity patterns

Figure 6. Comparison of z-velocity of house only (top left) and three different size trees close to the house
Figure 5. Comparison of x-velocity of house only (top left) and three different
size trees close to the house
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Evapotranspiration and Leaf Temperature

- Evapotranspiration can help to cool the microclimate around
trees

- Leaf temperature (a factor that contributes to ET
rate) 1s generally above ambient
due to absorbed solar radiation,
and 1s highly dependent on a wide
range of characteristics including
species, climate, weather, and
solar conditions

Leaf temperature probe used to measure absolute temperature
of a leaf. Note: This study relied on previously published leaf
temperatures. (Image from www.envoglobal.com.)

Ansari, A., & W. Loomis, 1959. American Journal of Botany, 46(10), pp. 713-717.
Vogel, S., 2009. New Phytologist 183(1):13-26. 28
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Estimating Tree ET

Species-specific tree evapotranspiration rates are not
well studied.

Thus, the FAO Penman-Monteith equation, and FAO
ET Calculator were used to estimate tree ET values for
proxy species selected from the literature

ET = K.ETyef

Empirically derived equation for estimating
species evaporation based on the FAO Penmen-
Monteith equation reference ET (ET,; ) and a
crop coefficient (K).

Allen, R., 1998. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations.
Food and Agriculture Organization (FAO-UN), n.d. FAO ET Calculator. Available at: http://www.fao.org/land-water/databases-

and-software/eto-calculator/en/ 29
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Estimating Tree ET

ET approximations were made for
representative small (crabapple), medium
(ornamental pear), and large (American
basswood) trees in the spring, summer, and

fall. ET (mm/day) by representative tree
species/size
Season Small | Medium | Large
Spring 1.6 2.0 4.3
Summer 6.5 7.8 9.9
Fall 4.2 7.5 5.2

ET approximations for representative
tree species.

IOWA STATE UNIVERSITY
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Estimating Leaf Temperature

In hot and humid climates leaf surface
temperatures are generally above ambient
temperatures due to absorbed solar radiation
(Ansari 1959; Vogel 2009).

- Based on published literature and typical
weather conditions in Des Moines, leaf
temperatures for tree species in the Capitol

East neighbourhood were estimated to be:
May July September

5°C over ambient | 15°C over ambient | 10°C over ambient

Ansari, A., & W. Loomis, 1959. American Journal of Botany, 46(10), pp. 713-717.
Vogel, S., 2009. New Phytologist 183(1):13-26. 31
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Conclusion, Limitations, Outlook

CFD framework integrating evapotranspiration integrates wholistic
impact of tree shading in relation to building characteristics and
according to tree size and distance from the home shows distinct
patterns for air movement and temperature profiles

The potential to integrate these specifics into design configurations for
this and similar neighbourhoods can provide significant benefit to
reduce building interior temperature conditions in situations of
extreme heat events. Thus future work in our team will now combine
radiation blockage as complement to the CFD simulations.

Current limitations of the proposed technique are related to the
missing validation with actual metered energy consumption data.

32
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