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Abstract
Climate predictions indicate a strong likelihood of more frequent, intense heat events. Resource-
vulnerable, low-income neighbourhood populations are likely to be strongly impacted by future 
climate change, especially with respect to an energy burden. In order to identify existing and new 
vulnerabilities to climate change, local authorities need to understand the dynamics of extreme 
heat events at the neighbourhood level, particularly to identify those people who are adversely 
affected. A new comprehensive framework is presented that integrates human and biophysical data: 
occupancy/behaviour, building energy use, future climate scenarios and near-building microclimate 
projections. The framework is used to create an urban energy model for a low-resource neighbourhood 
in Des Moines, Iowa, US. Data were integrated into urban modelling interface (umi) software 
simulations, based on detailed surveys of residents’ practices, their buildings and near-building 
microclimates (tree canopy effects, etc.). The simulations predict annual and seasonal building 
energy use in response to different climate scenarios. Preliminary results, based on 50 simulation 
runs with different variable combinations, indicate the importance of using locally derived building 
occupant schedules and point toward increased summer cooling demand and increased vulnerability 
for parts of the population.

Practice relevance
To support planning responses to increased heat, local authorities need to ascertain which neighbourhoods 
will be negatively impacted in order to develop appropriate strategies. Localised data can provide 
good insights into the impacts of human decisions and climate variability in low-resource, vulnerable 
urban neighbourhoods. A new detailed modelling framework synthesises data on occupant–building 
interactions with present and future urban climate characteristics. This identifies the areas most 
vulnerable to extreme heat using future climate projections and community demographics. Cities can 
use this framework to support decisions and climate-adaptation responses, especially for low-resource 
neighbourhoods. Fine-grained and locally collected data influence the outcome of combined urban energy 
simulations that integrate human–building interactions and occupancy schedules as well as microclimate 
characteristics influenced by nearby vegetation.
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1 Introduction
Within a society, some groups will be more adversely affected by climate change than others, due to a lack of available 
resources for adaptation or harsher existing conditions. Climate change acts an intensifier for inequities and stressors 
that already exist in many cities. Civic officials need to make decisions on how to adapt their cities and neighbourhoods 
to changing climate conditions, and this is particularly important for low-resource communities vulnerable to extreme 
climate events (Bolin & Kurtz 2018). However, resource-vulnerable populations are also often the least likely to 
participate in data collection and community engagement (Lasker & Guidry 2008).

Historically, strategies for urban adaptations to climate change have not engaged community or advocacy groups or 
sought to build the relationship-to-action ties crucial for fostering climate resilience (Aldrich & Meyer 2015; Bulkeley et 
al. 2013; Coaffee et al. 2018; Forsyth 2013). For example, a 2012 survey revealed that only Canada and select Asian and 
Latin American countries had over 20% of cities which had planned climate adaptions working with non-governmental 
organisations. Of these non-governmental organisations, few were community groups (Carmin et al. 2012). When 
these groups are engaged, their involvement is often isolated from larger planning processes and relegated to fact-
finding and later education (Few et al. 2007; Shi et al. 2016). Uneven participation and the existence of socially isolated 
groups limit implementation of adaptation strategies and muffle the needs of the most disadvantaged groups (Shi et al. 
2016). Decision-support tools that incorporate data from resource-vulnerable populations which can be implemented 
alongside community engagement strategies could empower local capacity and improve access to resources.

Approximately 28,000 heat-stress illness (HSI) hospitalisations occurred in 20 states in the US between 2001 and 
2010 (Choudhary & Vaidyanathan 2014). HSIs include, but are not limited to, heat stroke, heat exhaustion, heat cramps, 
heat syncope or heat rash. The majority of HSI hospitalisations occurred among males and persons over 65 years of age. 
The highest number of hospitalisations in the US were in the Midwest and Southern regions. There was a statistically 
significant correlation (p < 0. 001) between average numbers of hospitalisations for HSIs and the average monthly 
maximum temperature/heat index in all 20 states. Heat is the greatest cause of weather-related fatalities in the US, with 
a 30-year average of 134 cases annually. This number should be interpreted cautiously because heat-related mortalities 
spike in certain years—such as in 1995, when the US experienced a significant heatwave (NOAA n.d.). This problem will 
become more serious as extreme heat events are predicted to increase dramatically in large regions of the US, including 
the Midwest region, based on current predictions (Melillo et al. 2014).

Indoor conditions (temperature and relative humidity related to ambient conditions) dramatically affect human 
health because of the significant effects of heat exposure in indoor settings (Kuras et al. 2017). Indoor temperatures 
>32oC (with significant relative humidity) can cause HSI symptoms in working adults (Jacklitsch et al. 2016), such as 
cramps and exhaustion, which are exacerbated by age and other predisposing health factors (e.g. body mass index and 
heart disease) that influence vulnerability (Choudhary & Vaidyanathan 2014). However, public health officials lack a 
clear understanding of the relative importance of human behaviour/occupancy, and building characteristics on interior 
overheating risks. Members of resource-vulnerable populations may live in smaller homes with less variation in indoor 
thermal conditions that do not allow them to escape the heat, and/or building occupants often may not have central 
air-conditioning (AC) systems, or may lack the financial resources to make use of them (PCHD 2019).

Past extreme heat events have resulted in significant numbers of residents remaining in their homes (sheltering 
in place) under these dangerous conditions. Klinenberg (2015) analysed data from the 1995 Chicago heatwave and 
indicated that social isolation of older residents was a major predictor for mortality related to sheltering in place. Other 
work (e.g. Wolf et al. 2010) has examined the role that certain social ties (particularly the elderly with each other) which 
are otherwise good for individuals at risk may also unfortunately encourage residents to remain sheltered in place far 
longer than is safe.

Therefore, it is imperative to integrate information on individual behaviour patterns, social factors and building 
characteristics that mediate the effects of heatwaves in homes into community-scale vulnerability assessments. Civic 
officials recognise a crucial need for better data-driven tools to integrate decision-making with climate justice. To 
support resource-vulnerable populations, viewing residents’ challenges through the lens of climate justice can better 
inform the ethical, political and social issues that underlie how and why these residents disproportionately experience 
the effects of climate change (e.g. Chatterton et al. 2013).

Although multiple urban climate and related urban energy modelling techniques exist, many limitations prevent 
their use, often due to complexity of the data sets required to calibrate and validate the models (e.g. Abbasabadi et al. 
2019; reviewed by Reinhart & Davila 2016). Further, interactions between buildings and their nearby environments are 
still over-simplified in many building energy-use simulations (Anderson et al. 2015; Moonen et al. 2012).

Current peer-reviewed urban building energy-use models can be grouped into three categories. The first are data-driven 
models (e.g. Abbasabadi et al. 2019, who used a machine-learning technique to model building operational energy use 
at the urban scale). Second are physics-based urban modelling techniques, such as the Canyon Air Temperature (CAT) 
model (Erell & Williamson 2006), and the urban modelling interface (umi) (Reinhart et al. 2013). The CAT model was 
designed to predict site-specific micro-meteorological conditions in urban street canyons for extended periods, based 
on data from a reference station exposed to the same meso-scale weather. The CAT model then applies those data to 
building energy-use calculations for the canyon buildings. In contrast, umi generates EnergyPlus files for each building 
in a neighbourhood and runs annual energy simulations on each building. A third approach involves a combination 
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of data-driven and physics-based modelling. Multiple models exist in that realm (Chen & Hong 2018; Kaplan et al. 
2016). Kaplan et al. (2016) developed an integrated comparative modelling approach for Beer Sheva, Israel, and noted 
discrepancies in the amounts of energy use computed as a result between the three noted urban modelling validation 
approaches.

Model validation is also still a large challenge. This is due to lack and complexity of validation data in urban energy 
models. For example, Zhou et al. (2020) found it difficult to correlate results for three different approaches based on 
satellite data, surface measurements and simulations. Variables are rarely validated and most studies, if validated, are 
limited to their own climatic location (Zhou et al. 2019). While Yang et al. (2012) were able to couple the microclimate 
modelling tool Envi-MET on a neighbourhood scale with a building energy modelling engine (EnergyPlus), the more 
recent work of Zhou et al. (2019) showed that uncertainty based on the combination of input data and physics-
based modelling challenges is still too high for most current tools to be useful to make policy recommendations for 
stakeholders. These researchers thus recommend the combined use of the noted methods as well as further microclimate 
data collection on the ground for future validation.

To help identify who is affected, where they are affected and what specific characteristics contribute to overheating, a 
new methodological approach and modelling framework is presented. Based on the refined methodology and sensitivity 
analysis presented here, the outcome can be used to identify populations who are most vulnerable to extreme heat. 
Local authorities can then respond with a targeted program to reduce vulnerability and prepare for extreme heat 
events. A process is described that integrates data for human behaviour, related building energy-use characteristics, 
future climate scenarios, and near-building microclimates into an urban energy model for neighbourhoods. The work 
was conducted in the City of Des Moines, Iowa, a representative mid-sized city in the US Midwest. Of particular interest 
were low-income (low-resource) neighbourhoods.

This project is focused on two key challenges:

•	 The collection of data from community residents about their energy-use behaviour needs to be sensitive to the 
social context of resource-vulnerable populations.

•	 A scarcity of comprehensive modelling techniques exists that can integrate human and biophysical systems data 
to support broadly useful probabilistic models. This is important for understanding the dynamics of human oc-
cupancy to energy consumption and adaptation to extreme heat events.

Given this context and the challenges described above, the following questions arise:

•	 What methods of human data collection are most appropriate for research with resource-vulnerable populations 
that result in the voice and needs of these groups being accurately represented?

•	 Is it possible to develop comprehensive modelling techniques that integrate human and biophysical systems data 
related to microclimatic conditions such as extreme heat?

2 Methods: data collection (Phase 1)
2.1 Study area
Des Moines was chosen for this pilot study because its civic officials expressed a commitment to development as a 
sustainable, equitable city. It is representative of mid-sized US city neighbourhoods that are affected by climate change 
(located at 41.6°N latitude and 93.6°W longitude). This project focused on a resource-vulnerable neighbourhood in Des 
Moines. The Polk County Health Department (PCHD) with jurisdiction over Des Moines, and adjacent suburban/rural 
communities, has indicated a need for improved knowledge about vulnerability of residents to extreme heat in these 
areas. The neighbourhood is comprised of predominantly older single- or multi-family residential properties, some 
occupied by more than one household.

This setting offers unique and often underestimated conditions related to climate change—particularly for increased 
frequency and intensity of heatwaves. The area has harsh, cold winters with a design temperature of –19.4°C and hot, 
humid summers with design conditions of 32.4°C dry-bulb/23.8°C wet-bulb temperatures (ASHRAE 2009). Extreme 
heat conditions can be >38°C (ASHRAE 2019). For a standard house in the urban core, active heating and cooling energy 
systems are required throughout the year to manage internal comfort. However, the existing residential building stock 
in resource-vulnerable neighbourhoods typically have little insulation, older windows and leaky building envelopes with 
very low R-values. Additionally, up to 50% of homes in the most vulnerable neighbourhoods do not have functional 
central AC (Figure 2) (PCHD 2019). According to assessor data, 25% of homes in the area have no cooling capabilities 
at all and thus fully rely on natural ventilation in summer alone and fan-driven comfort (PCHD 2015).

2.2 Study process
In order to address the research questions above, researchers in natural and social sciences, engineering, design, and 
humanities, in collaboration with City of Des Moines officials and policy-makers, selected a neighbourhood to study in 
detail. A framework was developed to integrate human behaviour research with biophysical modelling to describe and 
predict human–building energy interactions and simulate future energy use (Figure 1). The urban modelling interface 
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(umi) software was selected to conduct the simulation because it has an open dat structure that allows for the addition 
of new metrics for specific urban microclimates (MIT Sustainable Design Lab n.d.). The software itself is designed to test 
its ability to integrate further refined data sets, and the work described herein is a contribution to this effort.

In Phase 1, human behaviour and biophysical data were collected. Human behaviour data collection included the 
use of action projects and two versions of a survey administered either in person at community events (streamlined 
surveys) or in a neighbourhood-wide questionnaire sent via mail. To support local youths’ interest in climate justice, 

Figure 1: Overview of integrated modeling framework workflow: grey boxes and dashed lines indicate future work.

Figure 2: Percentage of homes without central air-conditioning (AC) in different neighbourhoods in Des Moines, Iowa.
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the team created the Iowa State Community Growers programme as an action project in partnership with a local 
chapter of the Boys & Girls Club (Poplin et al. 2017; Shenk et al. 2019). Activities included creating a community garden, 
planting vegetables and developing winter-related weatherisation caulking instructions or summer shade give-aways as 
incentives for survey responses.

Biophysical data used included a comprehensive neighbourhood-scale tree inventory (conducted by the research 
team), data sets for the urban heat island (UHI) collected via remote satellite sensing (processed by the team), building 
characteristics from geographical information system (GIS) and county assessor data (PCHD 2019), and future climate 
predictions (developed by Patton 2013 and described by Rabideau et al. 2012) based on the North American Regional 
Climate Change Assessment Program (NARCCAP). In Phase 2, computational models were developed to represent and 
analyse the human and biophysical systems based on locally collected data. These included developing probabilistic 
input for building occupancy and energy use (schedules), and visualisation schemes using umi. This paper reports on the 
integration of human behaviour survey data, tree inventory and future climate predictions from Phase 1 with building 
occupancy and urban modeling interfaces from Phase 2 into a combined integrated urban energy and climate model 
in Phase 3. Future Phase 3 work will also include UHI data and agent-based modelling to refine the neighbourhood 
specificity further, and produce integrated urban energy models to generate scenarios that provide data for decision 
support to civic stakeholders.

2.2.1 Preliminary data
Preliminary temperature and relative humidity data were collected in three randomly selected homes that did not have 
AC during the summer of 2017. During an extended heatwave with five days characterised by outdoor temperatures 
>32°C (18–23 July 2017), indoor measurements showed daily peaks for temperature/humidity that indicated the 
potential for negative human health impacts as a result of extreme heat (Figure 3). In two of three homes, indoor 
temperature peaked at 35°C two days in a row, with night-time temperatures remaining at >29°C.

2.3 Human behaviour data
Issues of access may limit effectiveness of traditional survey methods (e.g. online, telephone) with marginalised 
populations, as residents often have lower rates of access to utilities such as telephone and internet service (Haight 
et al. 2014). As a result, city officials have struggled to reach these populations. Best practices and implementation 
strategies were developed to overcome these barriers through a synthesis of related literature and the narratives of 
other researchers (Table 1) (Cetin & Novoselac 2015; Stonewall et al. 2017).

The approach for investigating human behaviour was combined with strategies designed to strengthen community 
social capital. This social capital involves both the bonding social capital of individuals with similar interests and 
backgrounds working together (e.g. faith communities, clubs) as well as the bridging social capital of groups from 
differing backgrounds collaborating across generations, sectors, positions of power and types of organisations 
(Adger 2003; Aldrich & Meyer 2015; Coaffee et al. 2018; Magis 2010). Social capital is pivotal in disempowered and 

Figure 3: Indoor temperature profiles of three homes during a July 2017 extreme heat event compared with outdoor 
air temperature derived from airport weather station data.
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vulnerable populations in fostering an atmosphere of agency and hope (Emery & Flora 2006), and this foundation 
becomes especially important in supporting climate resilience (Ashwill et al. 2011; Kais & Islam 2016; Wolf et al. 2010). 
Communities with strong bridging social capital demonstrate greater potential for resilience because they have more 
diverse ties to disseminate information and better access to resources (Smith et al. 2012). This process integrated 
community engagement strategies designed to support both bonding and bridging social capital integrated with the 
human behaviour data collection.

Two survey instruments were developed and administered to different groups (Table 2) experiencing vulnerability 
within the same overall population in the study area. The two instruments were administered as follows: (1) families 
with young children vulnerable through demographics (Table 3); and (2) older adults who lived in smaller family 
structures and therefore might have fewer in-home social connections and may also be likely to suffer from chronic 
conditions/co-morbidities. More detailed population characteristics for the three neighbourhoods in the study area are 
given in Table 3.

2.3.1 Streamlined weatherisation survey administered at community events
In order to collect data from several key at-risk groups who might not otherwise have completed a mailed, online 
or more detailed survey (low-income families with younger children and Spanish-speakers) (Table 2), a simple 
weatherisation survey in English and Spanish (see the questions in Table 4) was distributed at family-friendly events 
aiming to empower youth and community connections. The survey contained 14 questions and was easy for adults to 
complete while waiting for children to participate in event activities. It revealed residents’ attitudes and actions related 
to home efficiency, energy use, energy-saving home improvements and the most-trusted social relationships for making 
energy-related decisions. For example, residents were asked who they go to for information about lowering energy bills. 
Questions related to relationships and trust helped identify ways to further support social capital.

Table 2: Summary of survey characteristics and responses.

Survey title Questions Target population Administration Response

Weatherisation survey 14 Families with children In person at community events 64 participants

Energy survey 45 Older adults Mail and return 86/838 (10.3%)

Note: Response rate is not available for the weatherisation survey because the event attendance was not recorded.

Table 3: Demographics of the three participating neighbourhoods in the study area (2010 Census).

Characteristic Neighbourhood 1 Neighbourhood 2 Neighbourhood 3

Total population, 2010 3187 2605 2584

Race: White; Black; Asian; Other (%) 54.1%; 13.0%; 8.3%; 24.6% 60.2%; 14.1%; 2.0%; 23.7% 55%; 41%; 2%; 2%

Hispanic; not Hispanic (%) 42%; 58% 32%; 68% 26%; 74%

Median household income (US$) US$24,300 US$20,803 US$32,706

Own; rent (%) 54.3%; 45.7% 56.1%; 43.9% 59.5%; 40.5%

Language spoken at home 66.2% English; 31.7% Spanish 76% English; 22.5% Spanish 73% English; 24.2% Spanish

Table 1: Best practices and implementation strategies for gathering data from marginalised populations.

Best practices Implementation

Earn trust through 
partnership

Formed a public partnership with community organisations already well known to the population

Be multilingual 
and inclusive

Data-collection materials, consent forms and recruitment materials offered in the languages most relevant 
to the community: English and Spanish

Communicate for 
understanding

Data-collection materials used images and familiar (e.g. ‘plain’) language to facilitate better understanding

Respect schedules 
and cultural norms

Structured data collection around a previously scheduled, public community event that aligned with the 
schedules of the residents

Offer something 
useful

Offered the chance to win gift cards to a home-improvement store within the community as well as rope 
caulk to allow participants to begin weatherising on their own

Source: Based in part on Stonewall et al. (2019).
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2.3.2 Survey administered via mail
To reach a wider range of residents and to provide more detailed, representative and robust data, a second energy-use 
survey with 45 questions was developed. This detailed, dual-language survey probed how residents made decisions about 
heating and cooling their homes. It was designed with five sections: the home and its structure, heating and cooling 
system and its operation, thermal comfort behaviours, energy efficiency and home improvements, and demographics. 
This survey was sent to 1000 occupied households, as listed by the US Postal Service, randomly chosen from the same 
three Des Moines neighbourhoods. Responses were returned by mail. A dual-language postcard reminder was sent to 
non-respondents and another mailing was sent to the non-respondents excluding those which were returned unopened.

2.4 Biophysical data
2.4.1 Building data
Interactions between buildings and their environment are still oversimplified in many urban energy modelling efforts. 
The urban modelling interface (umi) was used to extract geometric and geographically precise building footprint data 
and building assembly information from assessor and from GIS databases and to connect performance indicators from 
existing American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) databases stored in umi 
(operational/embodied energy use and indoor/outdoor access to daylight). umi is a plug-in for the Rhinoceros 3D 
computer-aided design (CAD) environment combining building location data with EnergyPlus and DaySim as modelling 
engines for energy, radiation and daylighting (Reinhart et al. 2013). The prepopulated umi template and construction 
library is based on validated sources such as the Bath Inventory of Carbon and Energy (2020), ASHRAE, International 
Organization for Standardization (ISO) Standard and the National Renewable Energy Laboratory of the US Department 
of Energy (Cerezo et al. 2014; WRI n.d.; MIT Sustainable Design Lab 2017).

A total of 14 templates were created in umi representing clusters of similar buildings in the study neighbourhood 
by combining construction information from the Polk County Assessor database to describe the construction material 
properties and energy/thermal performance of each building. The county assessor data included information on 
construction type, such as timber/masonry, cladding, roof type, heating, ventilation and air-conditioning (HVAC) 
systems, as well as year of construction or renovation. Of the 340 buildings located in the selected neighbourhood, 259 
had active AC systems installed and 81 were naturally ventilated. In the templates, the air infiltration rate was set in a 
range between 0.34 and 0.75 air changes per hour (ACH) based on standard practice and assembly resistance (R-value) 
estimated between 1 and 4 m2K/W. The average area and number of households per building was calculated based on 
the number of households and buildings. The window-to-wall ratio was estimated based on observation on site.

To evaluate the impact of changes in energy consumption, current utility costs were calculated for the preliminary 
simulations. The Iowa price for natural gas delivered to residential consumers for 2018 was US$8.94/thousand cubic 
feet (EIA n.d. a). The Iowa price of electricity delivered to residential consumers (e.g. for MidAmerican Energy Company) 
is currently US$0.1023/kWh (Des Moines Register n.d.).

Table 4: Questions in the weatherisation survey, offered in English and Spanish.

Question Response type

I live in this type of home Circle one

How many people live in your home? Numeric entry

To heat my home, I … Select all that apply

To cool my home, I … Select all that apply

I have done these things to my home to save money on my energy bills Select all that apply

Where would you get information on lowering your energy bills? Select all that apply

I would be more likely to make a change to my home if I heard about or saw neighbours making changes 
to their homes

P1: Yes/no
P2, P3: Likert type (1–5)

Who would you ask for information about lowering your energy bills? Select all that apply

In the last year, how many times have you talked with others about making home improvement changes 
to lower your energy bills?

Numeric entry

What factors do you consider when deciding to make home improvements, and how important are they? Likert type (1–10)

I know someone in my community who has applied to an assistance program for home improvement 
and energy efficiency

Yes/no

I have applied to an assistance program to have work done on my home to lower my energy bills Yes/no

If you have not applied to an assistance program, why? Select all that apply

As first steps in lowering my energy bills, I will … Select all that apply



An urban modelling framework for climate resilience in low-resource neighbourhoods460

2.4.2 Tree inventory data
A complete tree inventory was undertaken on a portion of the Capitol East neighbourhood to understand tree impacts 
on microclimates due to shading. Tree data included species, diameter, height, canopy shape, canopy height and two-
dimensional canopy width. The inventory included 1142 street and yard trees spatially catalogued using a Trimble Geo 
7x Handheld GNSS receiver (Trimble Geospatial, Sunnyvale, CA, US). Each tree canopy was assigned to one of eight 
representative tree canopy shapes to facilitate modelling (spheres, ellipsoids, cylinders, cones, horizontal rectangular 
cuboids, vertical rectangular cuboids, umbrella shapes and paraboloids) (Figure 4).

Tree inventory data were then converted into a GIS shapefile and integrated with the building data GIS shapefile from 
the same Polk County Assessor database (PCHD 2015) which contained the building footprints, elevations and parcel-
level data for 340 buildings within the same neighbourhood. The combined tree and building data were then integrated 
into umi using the GIS data-parsing plug-in Meerkat (McNeel Europe n.d.). To facilitate visualisations, tree trunks were 
modelled as cylinders using the base location, trunk radius and tree height as input to the model. The eight tree canopy 
shapes were created using the two-dimensional canopy parameters as well as canopy height to define canopy shape.

2.4.3 Current and future climate data
Different weather data sets that each correspond to a specific phase within the typical service life of a residential 
building (the period for which a building is actually in use) were used in this study. These include:

•	 A typical historical weather data file in the typical meteorological year (TMY3) format for Des Moines International 
airport. This consists of 12 typical meteorological months (January–December), with individual months selected 
from different years of the period of record (1991–2005) (Rabideau et al. 2012). The baseline TMY3 data set was 
obtained from the EnergyPlus weather data base (EnergyPlus n.d.).

•	 An actual weather file for 2017 in the selected location (41.53°N, 93.65°W) obtained from the National Solar Radia-
tion Database (NSRDB) and formatted according to the TMY3 manual (EIA n.d. b; Wilcox & Marion 2008). Hereafter, 
this data set is referred to as the actual meteorological year (Actual 2017).

•	 Three future weather files were used for simulation of future energy consumption of residential building stock. 
These future typical meteorological year (FTMY) data sets were prepared by Patton (2013), who combined pro-
jected changes in climate with existing TMY3 data to create FTMY data sets that represent high-, medium- and 
low-emission scenarios of FTMY for the 2041–70 period. Herein, these three data sets are referred to as FTMY-High, 
FTMY-Medium and FTMY-Low, respectively.

2.4.4 Urban heat island (UHI) data
Mishra & Lettenmaier (2011) analysed climate trends of the 100 most populous US urban areas (including Des 
Moines) and found that there were statistically significant changes in as many as half of these urban areas in 
temperature-related indices, such as heating and cooling degree-days and number of warm and cool nights, almost 
all of which indicated general warming trends. Most significant was the warming trend during night-time hours, 
with a median decadal increase of 8%. Currently summer temperatures in Des Moines are on average 2.9°F/1.6°K 
higher than rural Iowa (Climate Central 2014). The combination of urban heat island (UHI) effects and the warming 
climate is particularly challenging for the neighbourhoods studied here. Land surface temperature (LST) is an 
important factor in surface energy balances, and its spatiotemporal patterns can be retrieved from satellite remote-
sensing observations. Due to the large heterogeneity of air temperature in space and time and limited availability 
regarding its spatial coverage, LST has been widely used to investigate urban thermal environments for its strong 
relationship with air temperature.

Correlating LST for Des Moines with a neighbourhood map indicated that vulnerable populations could be impacted 
more than affluent neighbourhoods by the UHI effect because their location is close to the city inner core (Figure 2). 
The temperature in more vulnerable areas (higher residence densities, lower income) was higher compared with 
other areas: and more vulnerable neighbourhoods were generally located in higher temperature zones (Figure 5). 
In this analysis, air temperature data at a 1-km spatial resolution (pixel) in Des Moines were assembled using a 
geographically weighted regression model and seamless gridded LST and station air temperature (Li et al. 2018b). The 
LST data were built using a three-step hybrid method with four daily LST observations from two moderate resolution 

Figure 4: Eight representative tree canopy shapes used for modelling. Source: Adapted from Hashemi et al. (2018).



Passe et al. 461

imaging spectroradiometer (MODIS) instruments on Terra and Aqua satellites (Li et al. 2018a). The hottest day in 
2010 was chosen: 18 July. The UHI impact on each building performance was integrated with urban energy and 
thermal characteristics to evaluate residences without AC (Figure 5).

3 Methods: framework for the integrated model (Phase 2)
The collected human behaviour and biophysical data (described above) for the study area were then used to create an 
urban energy model for the selected neighbourhood in the urban modelling interface (umi). As mentioned, the umi 
model has an open data structure that allows for the addition of new metrics for specific urban microclimates. Detailed 
empirical data of near-building vegetation and microclimate were incorporated into the umi. Data collection and 
integration were focused on the energy-related behaviours of marginalised populations. To the authors’ knowledge, 
this has not previously been studied in detail in this kind of simulation (Hong et al. 2016). To do so, the resident survey 
results in the building schedules were incorporated into the umi. This approach includes actual occupancy patterns and 
behaviour and enables a representation of energy-related behaviours that are closer to actual patterns.

3.1 Residential energy-use behaviour models
Energy-use behaviour data (described above) were used to integrate neighbourhood energy dynamics into the Urban 
Building Energy Model. This was accomplished with the development of a probabilistic distribution using a Markov 
chain method and the American Time Use Survey (ATUS—publicly available data for human activities from a large 
database) (Malekpour Koupaei et al. 2019; US Bureau of Labor Statistics 2017). The probabilistic model used statistical 
data to predict the probability that certain behaviour, in this case leaving and returning home, occurs. The stochastic 
process involved in the calculations considers occupancy status as a random variable, and at each time step the 
model determines the probability of human presence according to the previous status. The Markov chain method is a 
commonly applied stochastic model and previous studies have reported approximately 73% accuracy for occupancy 
detection using this method (Dong et al. 2010).

The ATUS data set for a typical week provided data on the per cent of daytime and evening hours spent at home during 
the working week (Monday–Friday) and at weekends. Responses recorded in the survey were diverse, covering the range 
of possible values between 0% and 100%. Therefore, using one aggregated schedule based on an arithmetic average of 
the responses would have missed the diversity in behaviour among residents. Accordingly, a number of representative 
schedules were generated using a clustering/classification method rather than a single schedule. Clustering was then 
based on association to find the link between responses and their other general characteristics including respondents’ 
age, gender, economic activities and education levels.

3.2 Future climate data integration in urban energy modelling
The next step was to enable the model to incorporate TMY3, current and FTMY projected future climate scenarios (as 
described above). The TMY3 data were used as the baseline of the current practice. Rhinoceros 3D and the umi plug-in 
were used to create a digital model of the neighbourhood and to simulate the energy performance of each building 
within the selected study area.

Figure 5: Relationship between density of residences without air-conditioning (AC) and mean external air temperature 
on 18 July 2010 (the hottest day in 2010) at the census tract level.
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The GIS shape file for the Capitol East neighbourhood was imported to Rhino using Meerkat to generate geographically 
and geometrically precise data for simulation. This workflow makes the energy simulation process easily scalable and is 
also useful for other locations for which GIS data are available. The Polk County Assessor’s database was used to refine 
the Rhino model at the building scale. Once the physical model was generated, weather data for specific locations were 
used in thermal models of building energy simulation (Jagani & Passe 2017). Weatherisation strategies for increased 
enclosure insulation and reduced infiltration rate via caulking were simulated for one neighbourhood block using this 
method. Each house was assigned a building template for construction type/condition as explained in section 2.4.1.

4 Preliminary results
In order to build the capacity of the modelling framework, the human behaviour and biophysical model input were 
developed and tested separately. The goal was to test and demonstrate the methods presented in this paper. They were 
then implemented into the umi model for step-by-step preliminary test runs.

4.1 Human behaviour results
4.1.1 Streamlined survey results
The streamlined survey generated 64 responses. Respondents included those in households with higher occupancy 
(mean occupancy = 4.7, and 69% with at least four-person households, 33% with at least six-person households), 
more respondents who lived in homes other than single-family houses (30%), such as apartments or half-way homes. 
These responses indicate higher occupant density in the study neighbourhoods compared with aggregated occupant 
behaviour models used in ASHRAE Standard 90.1 (ASHRAE 1989). While these surveys were not representative, 
higher occupancy rates should be considered. This survey also revealed the social relationships important to these 
residents. When asked about their most trusted sources of information, respondents indicated they would ask experts 
on energy and home improvement for advice on lowering their energy bills (55%), family members (55%) or friends 
(32%). Respondents indicated preferences for talking with family and friends than consulting neighbours (26%) or 
neighbourhood leaders (21%). These results suggest the usefulness of working through trusted experts along with 
family and social event venues, as well as the importance of working to connect neighbours to strengthen social 
capital. Although the streamlined survey provided useful information, generalisation of the results is limited because 
participants in community events were self-selected—and usually residents with children. In addition, data were less 
robust because the survey was significantly shorter than the mail return survey.

4.1.2 Mail-return survey
The response rate for the mail-return survey was 10.3% (86/838 eligible responses). Respondents were typically older 
(75% were more than 41 years old), owned their homes (84%) and were English speaking (90%). Additionally, 35% of 
the respondents were over 60 years old, which is the age group most vulnerable to HSIs. Answers to questions about 
mean daytime presence rate (MDPR) and mean night-time presence rate (MNPR), number of people in the household, 
and how many/which electrical appliances household residents typically used were included in the development 
of occupancy schedules (Table 5). Refined schedules were made by combining three weekday and three weekend 
schedules into four different week schedules, which were then compared with conventional ASHRAE 90.1 schedules 
for residential buildings (Figure 6).

4.2 Preliminary microclimate results
The umi was then used to simulate energy performance of each building in the selected neighbourhood area for two 
scenarios: with and without trees. Simulations were performed using TMY3 climate data (Patton et al. 2013). Visual 
simulation (shadow range analysis) illustrates annual cooling energy demands for buildings in the model with the 
presence of trees, based on construction template, location and orientation (Figure 7).

Table 5: Defined occupancy schedules and their characteristics.

Week Composition

Weekday Weekend

ID MDPR 
(%)

MNPR 
(%)

ID MDPR 
(%)

MNPR 
(%)

W-1 a 45% 50% a 65% 70%

W-2 b 45% 75% a 65% 70%

W-3 c 85% 95% b 65% 90%

W-4 c 85% 95% c 85% 90%

Notes: Each day schedule represents one of the group clusters from the neighborhood mail survey responses.
MDPR = mean daytime presence rate; MNPR = mean night-time presence rate.
Source: Malekpour Koupaei et al. (2019).
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4.3 Combined results
Based on methods outlined in sections 2 (data) and 3 (framework), simulation model runs were generated with the 
50 possible combinations of three variable parameters: trees (yes/no), occupancy schedules (five, with four being 
based on the mail survey in addition to a standard one) and climate data sets (five) (Table 6). Tree shape geometries 
for the 1142 trees inventoried were used together with the ASHRAE Standard 90.1 schedules and the TMY3 data set 
to provide the baseline for the simulation runs (described in section 4.3.1). For the next set of simulations, different 
schedules based on survey data were compared with the baseline (described in section 4.3.2). Last, future climate data 
were used with the baseline schedules to identify the potential impact of future climate compared with the baseline 
(section 4.3.3).

4.3.1 Average annual household utility costs in baseline scenario
In the baseline scenario, all trees were included as shading geometry in the model, all buildings were assigned an 
appropriate template according to the assessors’ data, the ASHRAE 90.1 schedule was used for occupancy, and TMY3 
data for Des Moines were used as the weather database. An annual profile of normalised monthly energy consumption 
was generated (Figure 8). In this model, January had the maximum total monthly operational energy-use intensity 
(EUI) of all months with an average of 25.3 kWh/m2 (8 kBTH/sf) and May had the lowest of all months with an average 
of only 2.9 kWh/m2 (0.9 kBTH/sf). Accordingly, the annual EUI of a typical house in this neighbourhood is predicted 
to be 120.9 kWh/m2 (38.3 kBTH/sf). For a typical AC house in this scenario, it is 134.9 kWh/m2 (42.8 kBTH/sf), while 

Figure 6: Refined 24-hour schedules and hourly presence rates for (a) weekdays and (b) weekends among Capitol East 
residents based on their survey responses. Source: Malekpour Koupaei et al. (2019).
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the EUI for a typical naturally ventilated house is predicted to be only 114 kWh/m2 (36.1 kBTH/sf). The term ‘typical’ 
is used in the results section for a building where the EUI is equal to the average of all residential buildings in the 
model.

Average annual household utility costs were also determined for the baseline scenario for a building of 110 m2 
(Figure 9). A typical household in this neighbourhood spends an average of US$710.7 on energy expenditures  
(US$442 electricity, US$268 natural gas) per year. The majority of households in this neighbourhood are categorised  
as low income (annual income levels of under US$30,000, less than 80% of the area’s median income) (US Census 
Bureau n.d.; Drehobl & Ross 2016). Energy use accounts for at least 2.4%, and in many cases a much larger proportion, 
of residents’ annual income before taxes. This is consistent with previous studies suggesting that an American family 
with less than US$30,000 annual income would spend approximately 7% of before-tax income (or 23% of after-tax 
income) on energy costs (Drehobl & Ross 2016; Kontokosta et al. 2020; US Government Publishing Office 2015). 
These residents are the most vulnerable to energy price increases, as well as potential costs associated with increases 
in energy consumption due to extreme climate conditions (Kontokosta et al. 2020; US Government Publishing Office 
2015).

Based on these data (Figures 9 and 10) the annual energy expenditure for a typical AC house in this neighbourhood 
is US$860, which represents at least 2.9% of their annual pre-tax income. Households with naturally ventilated homes, 
on the other hand, are expected to spend about US$637, or at least 2.1% of their annual pre-tax income, on energy 
expenditures in the baseline scenario.

Figure 7: Shadow range analysis (May–September). Hours of direct sunlight received by buildings increases from dark 
to light colours; buildings indicated in blue are those with a >5% reduction in cooling demand for the scenario with 
trees. Source: Hashemi et al. (2018).

Table 6: Defined parameters and total number of all 50 possible input combinations.

Variable parameter Building model Climate data

Trees Occupancy schedule Weather data sets

Number of possible values 2 5 5

Description Included
Not Included

ASHRAE 90.1 
Occupancy Schedule
W-1
W-2
W-3
W-4

TMY3
Actual 2017
FTMY—High
FTMY—Medium
FTMY—Low
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4.3.2 Impact of occupancy schedules on annual energy consumption and costs
Occupancy schedules tested include the commonly used ASHRAE 90.1 standard schedule for residential buildings 
as well as the four custom schedules (W-1–W-4, based on Table 5) based on the ATUS and the place-based surveys. 
Overall, the use of custom schedules (instead of the ASHRAE 90.1 schedules) in the model showed that standard 
schedules tend to underestimate the annual heating loads (and hence the annual natural gas consumption). In the 
models where all buildings were assigned with one of the four custom schedules, annual heating loads were predicted 
to be between 83.9 and 88.1 kWh/m2 (26.6–27.9 kBTU/sf), based on the specific schedule being used, while the same 
value for the model that used ASHRAE 90.1 schedule was only 81.4 kWh/m2 (25.8 kBTU/sf). On the other hand, the 
same comparison for annual cooling loads (and hence the annual electricity consumption) showed that such loads are 

Figure 8: Energy-use intensity (EUI) in the baseline scenario for low-resource neighbourhoods in Des Moines, Iowa.

Figure 9: Energy burden costs in the baseline scenario for low-resource neighbourhoods in Des Moines, Iowa.
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slightly overestimated when ASHRAE 90.1 schedules are used to represent occupant behaviour. In the case of annual 
cooling loads, the use of customised schedules resulted in predictions between 18.6 and 19.1 kWh/m2 (5.9–6.1 kBTU/
sf), based on the specific schedule being used, while the use of ASHRAE 90.1 schedule predicted this load to be 19.5 
kWh/m2 (6.2 kBTU/sf). The inclusion of trees in the model, regardless of the occupancy schedule used for representing 
occupants’ energy-related behaviours and presence, generally results in an increase in annual heating loads and a 
reduction in annual cooling loads. For AC houses including tree impact, this increase in annual heating loads ranges 
from 2% to 4.7%, while the decrease in annual cooling loads is predicted to be between 4.5% and 10.2% and thus 
relatively more substantial. The range of expected changes in heating loads for naturally ventilated houses is similar 
but slightly less than for those with AC, with a maximum of 3.6% and a minimum of 1.4% (Figure 10).

Current electricity prices are much higher than natural gas prices in Iowa, so a significant increase in total annual 
energy expenditures for homes with AC is expected and predicted to be between US$51 and US$92/year. Such an 
increase could be problematic since more houses are now equipped with AC units (EIA 2011). The effects of occupancy 
schedules on expenditures for naturally ventilated houses are more subtle (between US$32 and US$50). However, 
overheating could become an issue in these homes if they do not adopt passive cooling strategies or are not equipped 
with AC units (Figure 11).

Figure 10: Comparison of different occupancy schedules on annual energy consumption. Note: W-1–W-4 refer to occu-
pancy schedules (see Table 5).
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4.3.3 Sensitivity of baseline model to different current and future climate
Generally, heating loads are expected to decrease in the projection period (Kalvelage et al. 2014), while cooling loads 
are expected to increase. These changes depend on the magnitude of climate change-induced ambient temperature 
increases over the next five decades. Based on data from 2017, the impact of longer periods during which there is greater 
need for cooling can already be observed in energy consumption of the buildings modelled (Figure 12). Including trees 
in the model results in a general decrease in cooling loads and a general increase in heating loads. This is consistent 
with findings of previous studies (e.g. Davis et al. 2016; Tabares-Velasco & Srebric 2012; Ziter et al. 2019) that have linked 
urban greening with a reduction in building cooling loads due to shading and evapotranspiration effects.

In terms of annual energy expenditures, the model predicts that even if utility rates remain the same over the 
projection period, in AC houses residents are going to have to spend between 5.9% and 10.7% more on their annual 
energy expenditures when compared with the baseline scenario. The effects of climate change on energy expenditure 
for naturally ventilated houses are more subtle and expected to be between only 3.8% and 5.8%. However, as stated 
above, overheating could become an issue in these homes if they do not adopt passive cooling strategies, such as night-
time cooling and natural ventilation or are not equipped with AC units (Figure 13).

5 Discussion and conclusions
This paper describes a method for integrating energy-use behaviour by resource vulnerable populations into an urban 
building energy-use model. Microclimate conditions were included with and without trees as well as UHI effects and 
future climate change predictions in a simulation framework to support future policy development.

In order to address the question: ‘What methods of human data collection are most appropriate for research with 
resource-vulnerable populations result in the voice and needs of these groups being accurately represented?’, two 

Figure 11: Comparison of effects of occupancy schedules on annual energy expenditure with and without trees.
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survey instruments were introduced: one at community events in conjunction with action projects, the other a 
representative mail survey addressing the case study neighbourhoods. These surveys were developed using best practices 
to engage under-represented communities that are typically not as easy to gather data from. The process of community 
engagement is a critical component to provide more realistic data and scenarios. In addition, co-production can foster 
social cohesion and increased levels of trust and empowerment between residents, the research team and civic partners, 
facilitating the research effort. This trust provided the basis for the collection and use of detailed data to give a more 
accurate description of conditions, which in turn helped to identify vulnerabilities at the neighbourhood level. Cross-
sector partnerships were crucial to enable collection, management, and analyses of more granular and diverse data.

To address the second question: ‘Is it possible to develop comprehensive modelling techniques that integrate 
human and biophysical systems data related to microclimatic conditions such as extreme heat?’, comprehensive 
modelling techniques were used to integrate human and biophysical systems data related to extreme heat to support 
development of more broadly useful probabilistic models. The umi model has proven effective for combining data 
and metrics for specific urban microclimates such as the impact of trees on summer cooling load reductions. Based 
on these two initial questions, the preliminary combined simulations does indicate that the incorporation of finer 
grained local data influences the outcome of combined urban energy simulations at the neighbourhood level, with 
up to 10% increase in potential energy costs for already vulnerable populations. These numbers suggest that policy 
decisions on neighbourhood levels should include locally collected human behaviour and occupancy schedules with an 
increased level of specificity wherever possible. Robust models based on detailed physical, human and context data can 

Figure 12: Comparison of current and future projected climate scenarios on annual energy consumption. Note: 
TMY = typical meteorological year; and FTMY = future typical meteorological year.
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more accurately reflect energy and planning needs in these settings. This is particularly important given the resource-
vulnerable demographics, as the standard ASHRAE schedules underestimated the annual heating loads (and hence the 
annual natural gas consumption).

The integration of human behaviour research with urban ecology, atmospheric science and architecture/design 
provided opportunities for exchange with vulnerable communities through neighbourhood meetings where research 
initiatives were presented and explored, and through interactions with policy-makers and local authorities who 
provided input for the project. In addition, other organisations (such as non-profit groups) provided data to understand 
general residential building retrofit outcomes when more detailed data were not otherwise available. This approach 
was workable, however measured utility data are still not available to the research team to verify initial model outputs.

The research also underscores the potential for civic officials to work to provide more tree canopy, which would 
reduce albedo and limit UHI impacts in summer as part of an holistic year-round climate adaptation plan, and provide 
retrofit support (e.g. for weatherisation) to resource-vulnerable neighbourhoods. These efforts could reduce thermal 
inequity and energy poverty while also avoiding eco-gentrification (Mitchell & Chakraborty 2014, 2018; Rice et al. 2020; 
Schwarz et al. 2015). These outcomes can be beneficial at neighbourhood scales if implemented using specific planting 
schedules and targets for reduction of impervious/dark surfaces, as well as other activities related to enhancing energy 
efficiency at a city scale.

Note that the quantitative findings are climate and location specific. Des Moines, Iowa, has very humid and warm 
summers, thus cooling load calculations for air-conditioned (AC) homes include a significant portion of energy use for 
dehumidification. Therefore, the reduction of energy use in summer related to trees is numerically less significant than 
it would be in a hot and dry climate. The impact of trees on air temperature reduction will increase human thermal 
comfort perception, even more important with a warming climate especially for buildings relying on natural ventilation.

Figure 13: Comparison of different weather scenarios on annual energy expenditure.
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5.1 Case study findings
This case study indicates that both present and future climate scenarios negatively impact on low-income households. 
Increased expenditure on energy for heating and cooling will adversely affect those least able to afford it—and create or 
exacerbate health conditions due to exposure to high temperatures in summer. Models using these data offer outputs 
to support decision-making and actions of community members and local government.

Occupant presence rates altered the energy profiles of neighbourhood buildings for both summer and winter. The 
ASHRAE 90.1 standard overestimated energy consumption compared with the values estimated using locally derived 
data on occupant behaviour. Current energy costs for electricity (summer cooling) and natural gas (winter heating) were 
determined to be a potentially significant portion of household income. Although this neighbourhood cannot yet be 
considered energy poor, changes in summer cooling demand could lead to such a situation, or in the case of naturally 
ventilated homes could lead to heat-stress illnesses (HSIs) among residents who try to shelter in place.

Co-created tools that enhance communities’ ability to adapt to climate change through efficient building energy 
use may also demonstrate the many energy-reducing strategies residents are already implementing. The focus was on 
immediate challenges, such as human energy-related behaviours, occupancy patterns and near-building microclimates 
affected by landscape characteristics (e.g. trees, other vegetation, hard surfaces) to provide additional specificity for 
scenario visualisation that protects the integrity of urban energy systems in low-resource neighbourhoods. The goal was 
to develop robust models that more accurately reflect energy needs in these settings. Cross-sector partnerships were 
crucial to enable collection, management, and analyses of more granular and diverse data to develop models for resilient 
urban energy systems and offer model outputs to support decision-making and actions of community members.

This paper has demonstrated a method of linking simulation approaches that use available tools (e.g. umi, publicly 
funded and available for download). Using open-source frameworks and tools allows the methods to be applied to other 
neighbourhoods anywhere in the world if the data are available. For instance, the method can be applied using local 
time-use survey (TUS) data (depending on the country), geographical information system (GIS) data (publicly available), 
tree surveys (from Google Earth, if no local survey is available), behaviour surveys from local residents, and assessor data 
(publicly available in the US). It may also be more helpful for future efforts if results are reported as ranges and not as 
absolutes.

6 Future work
The challenges encountered for developing a refined urban energy model were significant. Further cross-variable 
simulations should be used to explore and refine these preliminary outcomes. For example, it was surprising that 
building templates reacted differently to future climate scenarios, suggesting the need for further study of the buildings 
and the impact of their surroundings in greater depth and detail. Although preliminary, the results point toward the 
value of combining and integrating social and biophysical data to better understand the breadth and depth of climate 
change-related risks in resource-vulnerable neighbourhoods such as those in Des Moines.

For refinements related to human data, the authors plan to integrate an agent-based model (ABM) with umi such that 
data-driven and validated human decision processes and behaviours of the agents yield even more realistic building 
occupant schedules to better inform building energy-use modelling. Currently, the ABM is being used to determine the 
effects of different policy levers on residential weatherisation adoption. In particular, the availability and characteristics 
of government-funded assistance programmes are being tested (Huang et al. 2019), as well as the impact of community 
events that emphasise the value of weatherisation and response options during extreme heat events.

In addition to shading effects, trees alter near-building microclimate by providing evapotranspiration (ET) cooling 
that improves both indoor and outdoor comfort in summer. The team is currently enhancing the microclimate data by 
incorporating effects of ET rates for representative tree species found in the neighbourhood for spring, summer and 
fall conditions using the Food and Agriculture Organization of the United Nations’ (FAO) Penman–Monteith equation 
(Allen et al. 1998; FAO n.d.). Parametric computational fluid dynamics studies will then be performed to simulate the 
ET cooling effects of trees on near-building conditions and building temperatures. Given the significance of relative 
humidity in the summer climate of the US Midwest, it will be critical to improve the capacity of urban energy models 
to incorporate the impact of trees into policy considerations.
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